
 1

You can view this tutorial as pdf by typing on your
terminal:
> cd Prac-4

>evince dynamo_tutorial.pdf

You can then use it to copy-paste commands, but always double-check before running as
sometimes characters are not reproduced properly

The example data set
The data is a fraction of a tomogram. The full tomogram was used in "Cryo-electron tomography
reveals novel features of a viral RNA replication compartment." (Ertel et al.), and represents
several FHV viruses docked in the outer membrane of a mitochondrion.

Average for several hundreds of particles. The "crown" area is shown under a red shadow.
Change directory to Prac-4, the cropped tomogram file is there with name crop.rec.
>cd Prac-4
>ls
Now, open Dynamo by typing:
>dynamo
The Dynamo command line will open

Size check of a file
You're probably curious to see what's inside, so that let's write first:

dfile crop.rec

to let Dynamo check the dimensions of the file. The header of a .rec file is read as a
regular mrc, yielding:

 filetype: volume

 2

 size: 1285 x 956 x 786

So, it's a tomogram.

Lightweight visualization
We can inspect quickly its contents with dtmshow

dtmshow -otf crop.rec

Hereby, the flag -otf means "on the fly", telling dtmshow to not preload the full tomogram, but to
access in disk the individual slices that are needed when inspecting a particular area.

Basic controls of dtmshow

Go up and down. We want to select the locations were the vesicles intersect the mitochondrion
membrane and average them together. For this, we need to catalogue the tomogram, so that our
annotations are stored with a clear relationship with the tomogram.

Cataloguing the tomogram
We can create catalogues just to contain a single tomogram. They are useful to keep track of all
annotations, and of the typical transforms (binning, cropping of fractions) that we usually perform
on a larged size tomogram of interest. In this case, we can create the catalogue directly from the
command line. Close the dtmshow window and type:

 dcm -create fhv

where dcm is the short form of dynamo_catalogue_manager and fhv is just an arbitrary name.
The just created catalogue is empty, and we can add our tomogram with:

 dcm -c fhv -at crop.rec

 3

We can check that the tomogram is in the catalogue by asking Dynamo to show the contents of
the catalogue

dcm -c fhv -l tomograms

(the flag is the letter l, not the number 1)
or

dcm -c fhv -l t

The flag -l asks Dynamo to list items of a given category of catalogue contents, in this
case tomograms

Prebinning the tomograms
We typically want to prebin the tomogram, i.e., have a version of |smaller size that is known to
the catalogue. This version will be useful in some operations that require a full tomogram in
memory, an operation that can consume much memory and need a long time. In this example,
this is probably not necessary: a tomogram with a sidelength on x and y of ~1000 pixels
shouldn't pose any visualization problem. Still, in the command line, we can write:

dynamo_catalogue_bin('fhv', 1, 'zchunk', 300);

where the parameter zchunk represents the maximum number of z slices that are kept
simultaneously in the memory during the binning process. This parameter might be important for
larger size tomograms.

Operation with GUI
These steps could have been performed thorough the dcm GUI

Annotation of particle positions
Now we can open the tomogram through the catalogue:

dtmslice crop.rec -c fhv -prebinned 1

 4

dtmslice opened on the FHV example tomogramdtmslice

Probably you don't like the initial contrast, change it with the button in the toolbar.

contrast adjustment options inside dtmslice

Navigating the tomogram
Use the bar to move the slice up and dow, or drag it with the cursor while keeping the main
mouse button pressed. Other auxiliary tools are the keys x,y,z to change the slice orientation, the
number of projected slices (called "thickness" in the GUI controls).

Creation of models to contain annotations
In this example we just want to manually pick some particles. This can be done creating a
general or box model, which will reside in memory till we save it into the catalogue.

Creating a new model in the scene. Each annotation is represented by a box

After creating the model, it will be only model currently active in the dtmslice scene. You can
add new points pressing on [c]. The idea is to mark on the positions where you see the "neck" of
a vesicle (what we called "crowns") in contact with the outer mitochondrial membrane.

 5

Clicking the crowns on screen

The last marked point can be deleted by pressing [delete]. An arbitrary point can be deleted by
clicking on it with the right mouse button. This will open a menu that includes the option of
deleting the point (through Ctrl+X in Linux or Cmmd+X in Mac).
At this stage you probably want to change the transparency of the depicted slice, so that you can
control which objects have been already clicked below the depicted slide.

Selection of points. Transparency of slide was set to 0.8
.

 6

When you are done, remember to save the model, clicking on the disk icon to save or Active
model #1 > save active model into catalogue (disk).

Cropping particles
Now we want to use the positions that we have marked to extract the subtomograms and format
them as a data folder. The first thing we need is an estimation of the sidelength in pixels of each
of the subtomograms. The subtomogram box should be ~2 to 3 times the size of the particle.
In dtmslice We can use the keys [1] and [2] to define two anchor points that appear as
rombohedra (you might need to zoom in). Clicking (with the right button) onto the black dashed
line that links the points will show on screen both coordinates and the distance between them. All
distances are reported in pixels of the non-binned tomogram: even if you are using a binned
version, Dynamo keeps track of it.

Measuring distances with [1] , [2] and right-click
.
We will thus choose to create a datafolder with a cubic sidelength of 128 pixels (remember that
the particles will be cropped in the unbinned tomogram). This will ensure that the crowns fit
comfortably inside the physical box, even if our manual picking imposes an error of several
pixels. If you were using, say, a thickness parameter of 10 pixles in dtmslice, you have to count
with at least this inaccuracy in the location of the particles.
Now, we check that the catalogued tomogram contains the model that we manually picked
before:
close the GUI

>> dcmodels fhv

Passing to MATLAB…

Volume 1. Matching models: 1 (total: 1)

/i/embo2019/u/emboX/Prac-4/fhv/tomogram/volume_1/modules/mboxes.omd

(ignore the openmpi error)

Creating a table

 7

We could just use the catalogue GUI to extract the particles, be it is also possible to proceed
directly with the command line. We will use the dtcrop command, .which requires preparing
a table with the information of the model.

m = dread('/i/embo2019/u/emboX/Prac-4/fhv/tomograms/volume_1/models/mboxes.omd');

t = m.grepTable();

Here, you read the file into a model object (which we arbitrarily choose to call m), and then you
use the grepTable method on this object to extract a variable into your workspace. We
arbitrarily call it t.

>> dtinfo(t);

 size : 22 35

 NaNs : 0

 COLUMN

[2] marked for alignment: 22

[3] included in average : 22

[4-6] shifts : all zero

[7-9] angles : all zero

[10] cross correlation : min: 0.00 max: 0.00 mean: 0.00 std:

0.00

[13] Fourier sampling : 1 (single tilt around y)

[13] fsampling types : all of the same type

[14-15] ytilt range : min:120.00 max:120.00

[16-17] xtilt range : min:120.00 max:120.00

[20] linked volumes : total 1 (labels: [1])

[21] regions inside tomograms : total 1 (labels: [0])

[22] user-defined classes: total 1 (labels: [0])

[23] annotation types : total 1 (labels: [0])

[24-26] spatial locations : initialized: 22

[24] * x : min: 645.21 max: 1001.92 mean: 799.05

std: 109.44

[25] * y : min: 23.78 max: 917.51 mean: 484.07

std: 271.28

[26] * z : min: 198.00 max: 563.00 mean: 415.55

std: 114.03

[31] original tags : total 1 (labels: [0])

[32] compacted particles : total 1 (labels: [1])

[34] references : total 1 (labels: [0])

[35] subreferences : total 1 (labels: [0])

[36] apix : Warning: column not available in this

table

 8

[37] defocus : Warning: column not available in this

table

Using dtcrop
The simplest syntax of dtcrop requires passing the name of the tomogram from which we want
to crop (syntax varies for cropping from multiple tomograms). We know that the file is crop.rec,
and we could directly insert this name in the command. But a catalogued model already contains
information about its source tomogram (inside its property cvolume), so that we can always track
it back. We could then define a variable tomogramFile by accessing this information inside the
model variable m:

tomogramFile = m.cvolume.file();

(ignore the warning message)
and launch the cropping order:

o = dtcrop(tomogramFile,t,'particlesData',128);

The last part of the final output into screen should look like this:

21 [read_subtomogram] Volume has size 1285 956 786

[read_subtomogram] Accessing subvolume x: 713:840; y: 339:466; z:

160:287 totalling ~ 16.0Mb

Elapsed time is 0.191014 seconds.

22

Total time invested in cropping: 7s

[table_crop] Done extracting 20 particles

 from tomogram :"/d/embo2019/u/emboX/Prac-4/crop.rec"

 destination folder :"particlesData"

 excluded particles : 2

 [ok] table_crop

informing you that some of the particles where excluded, as they were probably too close to the
boundary of the tomogram, given the sidelength we asked for. Inside the created data folder, you
will find the table particlesData/crop.tbl, which only indexes the actually cropped particles.

Creating an average
The particles can now be averaged together. They have different orientations, but in this
tomogram we only have a fraction of the membrane.

oa = daverage('particlesData','t','particlesData/crop.tbl');

dwrite(t,'raw.tbl');

dwrite(oa.average,'rawAverage.em');

 9

You can now look at the average with chimera - open another terminal and type ‘chimera’

Using the membrane to impart an orientation
This section describes a method to compute:

• a rough orientation of the particles, and
• a rough first template

In this section we will use the membrane of the mithocondrion to assign a roughly orientation to
each of the points in the table. This orientation will be defined by the normal of the closest point
in the membrane. The membrane will be defined as a a triangulation, to be constructed based on
a set of manually picked points.

Pick membrane points
We open our tomogram in dtmslice

\dtmslice @{fhv}1 -prebin 1

In this variant of the syntax of dtmslice, the string @{fhv}1 just means "tomogram number 1
inside catalogue fhv. On the opened scene, we will use a montage to manually click on a set of
membrane points.

It asks whether to keep or delete from memory the model pool: delete it.

Opening a montage view

By default, this montage represents slices taken orthogonally to z every 20 pixels of the
unbinned tomogram. This can be changed in the settings before opening the montage GUI. Now,
we can create a model of type Surface, which we will use to store a set of points in the
membrane to be picked manually (or semiautomatically). To do this, go to Model pool> Create
new model in pool (choose type) > surface

 10

Creating a surface model

You need to click on the point switcher (the control in the toolbar with a c and an i) to allow
entering points. The basic controls are:

• Mouse click to enter a point.
• d to delete a point.
• i to insert a point.

 11

Point switcher must be toggle on to pick points into the model

Use the >> button in the bottom of the GUI to go to next set of orthoslices. You do not need to
pick every slice, but every 4-5 or so.

 12

Controls of the montage GUI

Note that the points that you click in the Montage GUI are assigned to a model in the pool, and
as such, they appear automatically in the dtmslice GUI

Points clicked in the montage GUI reflect in the tmslice GUI

You also need shift + C in order to place a center inside the mithocondrion. This point is just
used to tell Dynamo what is the inside and what is the outside face of the surface that we are
building.

shift + C marks an arbitrary interior point

 13

Create a surface
Now, we want to convert the points that we have introduced into a triangulation. This is a part of
the workflow used to crop particles from membrane models, so we open the workflow GUI for
this model in the Active Modelmenu tab.

Invoking the workflow editor of active model

We can first check the points currently contained in the model, by right clicking on the first
viewing option and choosing the User points option. They will be depicted in a graphic window
which will update with the new graphical elements that we depict there.

 14

Showing original points in the model workflow GUI

We first need to create a spline interpolation on each of the levels of our point cloud.

 15

Control points are created by spline interpolation.

To rotate the view, right-click on the graph, select the yz plane view, and click the rotate3D
button.
Now we define a triangulation on this control points.

 16

Creating a triangulation on the control points

Which can be subdivided to get a smoother appearance, and also a more accurate
representation of the geometry.

 17

A single round of subdivision smoothens the appearance of the lattice

Then, we can change the name of the model for clarity, and then save it into the catalogue (with
the disk icon in tmslice or the Save into catalogue options under the Active model menu). Use
mySurface as your new name (do not use ‘membrane’).

Renaming a saving a model into the catalogue

Use a surface to impart orientation

 18

We bring the model into our workspace. We search for it in the catalogue:

dcmodels fhv -nc mySurface -ws output

which will prompt the response

Volume 1. Matching models: 1 (total: 1)

/i/embo2019/u/emboX/Prac-4/fhv/tomograms/volume_1/models/mySurface.omd

now, we can read the model file into our memory space to operate with it:

\m = dread(output.files{1});

Now the model m is in our space of memory and can be used to impart an orientation to the
points in our table.

tOrientedBySurface = dpktbl.triangulation.fillTable(m,'raw.tbl');

In this table, orientations are orthogonal to the membrane (or more precisely, orthogonal to the
closest triangle in the mesh that represents the membrane)

 figure;

dslices('particlesData','t', tOrientedBySurface,'projy','c20','align',1,'labels','on');

 19

Slices along the xz plane as seen by the table

tConsistent =

dynamo_table_flip_normals(tOrientedBySurface,'center',m.center)

We can check the effect of this table on the particles through:

figure;dslices('particlesData','t',

tConsistent,'projy','c20','align',1,'labels','on');

 20

Slices along the xz plane as seen by the table, after using the center point to establish the interior side of

the surface

To get a better graphical impression, we can depict our surface (contained in the model m) with:

m.ezplot

and choose the Surfaceoption

 21

Easy way to get all defined plots of a model object.

Then, we just plot the positions of the particles on the same graphical figure:

dtplot(tConsistent,'m','sketch','sketch_length',100,'sm',30);

 22

dtplot directs its output on the last active figure

Management of the missing wedge
When we create a table considering only the orientations of the points with relation to a
membrane, there is no particular preference for rotations of the particles about the normal
direction (i.e., azimuthal directions). The narot angle in this table is initialized to zero

Thus, take into account that an average created on these particles will have a strong missing
wedge, especially in our case, where we have a preferential direction. This can be checked by
averaging the particles against this table:

oa=daverage('particlesData','t', tConsistent,'fc',1);

Here, we ask ('fc',1) to run a Fourier compensation step, so that we can check in the
output oa the property fweight, which contains the number of times a Fourier component is
represented in the average. Bright values mean that the Fourier component is present in many
particles (yielding thus an average of better quality for the involved frequencies).

dview(oa.fweight);

 23

Fourier component presence without azimuthal randomization

We can atenuate this effect by randomizing the rotational angle:

tConsistentRandomized = dynamo_table_randomize_azimuth(tConsistent);

and averaging again.

oaRandomized=daverage('particlesData','t', tConsistentRandomized,'fc',1);

Now, the fweight map doesn't show such a strongly preferential orientation:

dview(oaRandomized.fweight);

 24

Fourier component presence with azimuthal randomization

The effect in direct space can be shown by depicting both averages (with and without
randomization side to side)

dmapview({oa.average,oaRandomized.average});

 25

The map on the left shows a worse definition and clear traces of missing Fourier components

Project for rotational alignment
We have now a template and a coherently defined metadata (i.e. table) that align the particles
coarsely along the right direction. We write them into disk:

dwrite(tConsistentRandomized,'zOriented.tbl');

dwrite(oaRandomized.average,'zOriented.em');

and create a project with these files. Note that the data folder remains unchanged.

dcp.new('zOriented','d','particlesData','template','zOriented.em','masks','

default','t','zOriented.tbl');

In this project, we will ask for a symmetrization 'c57'.. this is just to simulate fully rotational
symmetry. We are not assuming that this symmetry is physical: we just want to force any
possible symmetry axis in the data along the z axis. We also keep binning twice the particles, in
order to get the computation times short.
On the numerical parameters tab edit as shown in the picture below:

 26

Alignment parameters in zOriented

And on the computing environment:

 27

Check, unfold, and run the project:

This will take a few minutes. You can check the progress by typing (on a different terminal
window):
tail -f projectname/log.txt
The result shown an incipient formation of the crown...

 28

Result in zOriented

and barely identifialble in Chimera: open a new terminal, go to the folder
zOriented/results/ite_0003/averages/ and type
chimera average_ref_001_ite_0003.em

 29

Alignment parameters in localized project

Project for localized alignment
We don't see clearly what is happening on the area of interest... On one hand we know that we
are using a very reduced number of particles (which on top of it are too similarly oriented). But
there is still some room to improve in the approach: we can focus the refinement in the area of
interest.

Creating a tight mask
We want to create a mask that encloses the area of interest. To this end, we open the average
in dmapview, by transferring it from dview (Export) or just asking ddb to pass the average
directly to mapview

ddb zOriented:a:ite=3 -m

We tune the browser for viewing along y, and we select one of the central slices.
Then, we select the area that we want to use as seed in this plane to create a revolution solid.
Change orthoslices to 64/64. We press on [shift] + [s] on the selected slide, letting a new
window pop up. In this window, you handdraw an area on the XZ plane (left click to start drawing,

 30

right click to stop). Dynamo will rotate the region about the z axis, creating a revolution solid into
the file temp_drawn_revolution_mask.em

Drawing a revolution mask.

We have to change the default name given by Dynamo to a relevant one:
!mv temp_drawn_revolution_mask.em teethMask.em

and now continue the previous project by transferring the results of zOriented to a fresh project
(lets call it localized)

dynamo_vpr_branch zOriented localized -b 1 -noise 0 -ite 3

dcp localized

and insert the tight mask teethMask.em that we just created as alignment mask of the project.
(click on masks and browse the alignment mask). Note that we do not want impose any
symmetry in our parameters, and we want to reduce the binning (particle size = 64):

 31

Alignment parameters in localized project

Let's inspect the output:
ddb localized:1 -m

Last average in project localized as shown by dview

There are different things that we like in this average

 32

Last average in project localized as shown by mapview

1. Last average in project localized as shown by mapview The localized masking worked
well, producing a clearer insight into the region of relevance

2. Although we are using signal only inside the mask, the material outside of the mask does
'not become smeared. This is clear mark that the alignment is real and non artifactual.
That's an important point to check when we use small masks.

3. The symmetry in the area becomes apparent on the bare eye. They can be distinguished
clearly with mapview and even in Chimera.

 33

Testing the symmetry
We can check for different symmetry operators to confirm the presence of symmetry.
Basic command
The basic command for this task is dynamo_symmetry_scan. In its fundamental syntax, you
need to state the type of symmetry operator to be tested, and a set of operator.

 stm =

dynamo_symmetry_scan('localized:a','c','order',3:15,'type','pearson','nfig'

,3);

 34

Symmetry detected for different masks

With a more localized mask:

 slm =

dynamo_symmetry_scan('localized:a','c','order',3:15,'type','pearson','mask'

,'teethMask.em','nfig',4);

 35

Symmetry detected for different masks
Interpretation of results
If you got the results above, you might have jumped to the conclusion that they already constitute
an objective hint at a real C12 symmetry. This is, however, not true. The fact is that, with a
slightly different picking of particles, you could have obtained the profiles in these pictures:

Symmetry merit plot (local mask)

 36

Symmetry merit plot (global mask)

These images represent the result of the two symmetry-exploring commands described above
obtained by a different user. . Surprisingly, they point at possible symmetry orders of 11 and 13.
So, what is going on here? How is it possible that two different users that operate exactly the
same walkthrough get contradictory symmetry estimations? The reason is that different users will
pick manually slightly different particle centers, and this have a direct impact on the symmetry
estimation. In short, the problem is that the density map localized:a is not garanteed to have
its possible symmetry axis located along the center of the box, and this
misleads dynamo_symmetry_scan. This can bechecked by opening the average
in mapview and overlaying the file 'teethMask.em' on it.

Mapview map n file localized:a overlayed with file 'teethMask.em'

In this non-centered density map, any symmetry determination can only be an artifact. To solve
this, we create a centered version:

ddb zOriented:a -r zo % extract average of zOriented as the ws variable

zo

ddb localized:a –r localizedAverage % extract average of localized as

the ws variable localized Average

sal =

dalign(localizedAverage,zo,'cr',0,'cs',30,'ir',0,'dim',64,'limm',1,'lim

',[20,20,20]); % aligns localizedAverage against zo (like that

localizedAverage is centered)

centerLocalized = sal.aligned_particle;

 37

dview(centerLocalized);

Recentered average (x and y views)

We can scan again the symmetry operators on the recentered volume.

 slmCentered =

dynamo_symmetry_scan(centerLocalized,'c','order',3:15,'type','pearson','mas

k','teethMask.em','nfig',4);

'teethMask.em' overlayed on the recentered average

Symmetry merit plot after recentering
using 'teethMask.em'

Now the peaks located that at 6 and 12 are trustworthy. You can even create a new mask on the
recentered average, carefully excluding intensities from the central ring structure to completely
rule out any artefact.

 38

Mask constructed ad hoc on the recentered average

Symmetry merit plot using ad hoc constructed

mask

Subboxing
The subboxing technique consists in redefining the area of interest inside a previously defined
average. In this example, we have use the full crowns as the subject of alignment and averaging.
This has allowed us to use the whole signal carried by the full crown on each of the particles to
drive the alignment robustly. This approach, however, will not allow us to identify heterogeneity
and flexibility inside the individual crowns. Additionally, the possible hetereogeneity inside the
crown will decrease the quality of the alignment when the crown is treated as a whole.
With the subboxing technique, we can use our previous results to setup an approach that centers
the alignment on the individual teeth. Each one the particles in our new data set will be
a subbox (a tooth) extracted from the previos box (the crown) using the alignment parametes for
the full boxes gained by the projects that we have ran so far.

Defining a subboxed subunit
First, we need to define the location that we want to subbox. We use mapview

dmapview localized:a

to show the last average in the project localized

 39

Selecting the center of the tooth subunit with mapview

You probably want to explore several views in mapviews (x'/'y' and 'z') to make sure you
(roughtly) hit the center of the subunit of interest. Guiding yourself only for a view on z can be
misleading.

Selecting the center of the tooth subunit with mapview on the y view

 40

.
As we are in this browser, we can check the size of the subunit that we want to subbox, using the
two markers C and N. This will be useful later when we want to actually crop physical particles
using dtcrop, when we will be required to input a sidelength for the subboxed data folder.

Measuring distances in mapview
.
We define a variable to contain the position that we read in mapview for the blue (North) anchor.

rSubunitFromCenter = [88,80,53] - [64,64,64];

We subtract the half sidelength of the full box, because the next command will need the position
of the asymmetrical unit expressed in relation to center of the box.

Creating a subboxing table
We extract the last refined table:

ddb localized:rt -r t

and define positions related by C12 symmetry along the axis

ts = dynamo_subboxing_table(t,rSubunitFromCenter,'sym','c12');

The new subboxed table ts will have 12 times as many rows as the original one. The system of
reference on each particle will point z in the direction of its original box, but
the x and y orientations of each tooth will be symmetrically related in the same crown. We can
depict this geometrical relationship by plotting a sketch of all the particles in the table:

 41

figure;dtplot(ts,'m','sketch','sketch_length',100,'sm',30);view(-

151,12);axis equal;

Sketch of orientations of the new subboxed table ts
.
Creating a subboxed data folder
Now we have all we need to go back to the original tomogram and crop the subboxed particles
into a new data folder using the sidelength that we checked with mapview:

dtcrop('crop.rec',ts,'subboxData',32);

We can run our typical sanity check to ensure that everything ran correctly

osb = daverage('subboxData','t',ts,'fc',1);

To visualize it you can write:

 42

 dview(osb.average);

Density map of the average of subboxed teeth
.
As it looks like we expected, we just write it into a file, which we will use to define a new project.

dwrite(osb.average,'subboxRaw.em');

Defining masks
There are some tools to quickly format masks for project. If we want to check a reasonable
radius for our mask, we can use the dsphere command and overlay the created mask on the
template

cs = dynamo_sphere(10,32);

figure;dslices(osb.average,'y','ov',cs,'ovas','mask');

figure;dslices(osb.average,'ov',cs,'ovas','mask');

 43

Testing the radius of created masks by overlay on template
.
In fact, this mask is probably too risky: we need a minimum of signal to drive the alignment

dwrite(cs,'maskTooth32.em');

Subboxing project
We create the project through:

dcp.new('subboxBig','d','subboxData','template','subboxRaw.em','masks','def

ault','t','subboxData/crop.tbl','show',0);

In this case, we use 'show' 0 would suppress the dcm GUI. We use typically this option when
we want to enter project parameters through the command line. This is exactly equivalent to
entering parameters through the GUI.

dvput subboxBig mask maskTooth32.em

dvput subboxBig ite_r1 3

dvput subboxBig cr_r1 4

dvput subboxBig cs_r1 2

dvput subboxBig ir_r1 4

dvput subboxBig is_r1 2

dvput subboxBig rf_r1 2

dvput subboxBig rff_r1 2

dvput subboxBig dim_r1 32

dvput subboxBig lim_r1 [4,4,4]

dvput subboxBig limm_r1 1

A list of the names of the parameters can be displayed through the command dvhelp. The
computing environment is set using the destination parameter, shortnamed dst. To run it in
matlab use:

 44

 dvput -dst matlab_parfor

For standalone running, use:

 dvput -dst standalone

After running the project, we can check the effect of the independent refinement of the "tooth"
units:

ddb subboxBig:a:ite=[0,3] -m

Slice-to-slice comparison of initial template and final average of the subboxing project
.
or send the average to Chimera through:

ddb subboxBig:a -c

 45

Density map of the average of subboxed teeth after refinement
.

Visualization
You can continue working on this data in the Walkthrough on creation of 3d scenes, where you
will learn to depict tomgraphic slices, place templates in table positions, and depict graphical
elements representing model geometries.

