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You can view this tutorial as pdf by typing on your 
terminal: 
> cd Prac-4 

>evince dynamo_tutorial.pdf 

You can then use it to copy-paste commands, but always double-check before running as 
sometimes characters are not reproduced properly 

 

The example data set 
The data is a fraction of a tomogram. The full tomogram was used in "Cryo-electron tomography 
reveals novel features of a viral RNA replication compartment." (Ertel et al.), and represents 
several FHV viruses docked in the outer membrane of a mitochondrion. 

 
Average for several hundreds of particles. The "crown" area is shown under a red shadow. 
Change directory to Prac-4, the cropped tomogram file is there with name crop.rec. 
>cd Prac-4 
>ls 
Now, open Dynamo by typing: 
>dynamo 
The Dynamo command line will open 

Size check of a file 
You're probably curious to see what's inside, so that let's write first: 

dfile crop.rec 

to let Dynamo check the dimensions of the file. The header of a .rec file is read as a 
regular mrc, yielding: 

 filetype: volume 
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 size: 1285 x 956 x 786 

So, it's a tomogram. 

Lightweight visualization 
We can inspect quickly its contents with dtmshow 

dtmshow -otf crop.rec 

Hereby, the flag -otf means "on the fly", telling dtmshow to not preload the full tomogram, but to 
access in disk the individual slices that are needed when inspecting a particular area. 

 
Basic controls of dtmshow 

Go up and down. We want to select the locations were the vesicles intersect the mitochondrion 
membrane and average them together. For this, we need to catalogue the tomogram, so that our 
annotations are stored with a clear relationship with the tomogram. 

Cataloguing the tomogram 
We can create catalogues just to contain a single tomogram. They are useful to keep track of all 
annotations, and of the typical transforms (binning, cropping of fractions) that we usually perform 
on a larged size tomogram of interest. In this case, we can create the catalogue directly from the 
command line. Close the dtmshow window and type: 

 dcm -create fhv  

where dcm is the short form of dynamo_catalogue_manager and fhv is just an arbitrary name. 
The just created catalogue is empty, and we can add our tomogram with: 

 dcm -c fhv -at crop.rec 
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We can check that the tomogram is in the catalogue by asking Dynamo to show the contents of 
the catalogue 

dcm -c fhv -l tomograms 

(the flag is the letter l, not the number 1) 
or  

dcm -c fhv -l t 

The flag -l asks Dynamo to list items of a given category of catalogue contents, in this 
case tomograms 

Prebinning the tomograms 
We typically want to prebin the tomogram, i.e., have a version of |smaller size that is known to 
the catalogue. This version will be useful in some operations that require a full tomogram in 
memory, an operation that can consume much memory and need a long time. In this example, 
this is probably not necessary: a tomogram with a sidelength on x and y of ~1000 pixels 
shouldn't pose any visualization problem. Still, in the command line, we can write: 

dynamo_catalogue_bin('fhv', 1, 'zchunk', 300);  

where the parameter zchunk represents the maximum number of z slices that are kept 
simultaneously in the memory during the binning process. This parameter might be important for 
larger size tomograms. 

Operation with GUI 
These steps could have been performed thorough the dcm GUI 

Annotation of particle positions 
Now we can open the tomogram through the catalogue: 

dtmslice crop.rec -c fhv  -prebinned 1  
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dtmslice opened on the FHV example tomogramdtmslice 

Probably you don't like the initial contrast, change it with the button in the toolbar. 

 
contrast adjustment options inside dtmslice 

Navigating the tomogram 
Use the bar to move the slice up and dow, or drag it with the cursor while keeping the main 
mouse button pressed. Other auxiliary tools are the keys x,y,z to change the slice orientation, the 
number of projected slices (called "thickness" in the GUI controls). 

Creation of models to contain annotations 
In this example we just want to manually pick some particles. This can be done creating a 
general or box model, which will reside in memory  till we save it into the catalogue.  

 
Creating a new model in the scene. Each annotation is represented by a box 

After creating the model, it will be only model currently active in the dtmslice scene. You can 
add new points pressing on [c]. The idea is to mark on the positions where you see the "neck" of 
a vesicle (what we called "crowns") in contact with the outer mitochondrial membrane. 
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Clicking the crowns on screen 

The last marked point can be deleted by pressing [delete]. An arbitrary point can be deleted by 
clicking on it with the right mouse button. This will open a menu that includes the option of 
deleting the point (through Ctrl+X in Linux or Cmmd+X in Mac). 
At this stage you probably want to change the transparency of the depicted slice, so that you can 
control which objects have been already clicked below the depicted slide. 

 
Selection of points. Transparency of slide was set to 0.8 
. 
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When you are done, remember to save the model, clicking on the disk icon to save or Active 
model #1 > save active model into catalogue (disk). 

Cropping particles 
Now we want to use the positions that we have marked to extract the subtomograms and format 
them as a data folder. The first thing we need is an estimation of the sidelength in pixels of each 
of the subtomograms. The subtomogram box should be ~2 to 3 times the size of the particle. 
In dtmslice We can use the keys [1] and [2] to define two anchor points that appear as 
rombohedra (you might need to zoom in). Clicking (with the right button) onto the black dashed 
line that links the points will show on screen both coordinates and the distance between them. All 
distances are reported in pixels of the non-binned tomogram: even if you are using a binned 
version, Dynamo keeps track of it. 

 
Measuring distances with [1] , [2] and right-click 
. 
We will thus choose to create a datafolder with a cubic sidelength of 128 pixels (remember that 
the particles will be cropped in the unbinned tomogram). This will ensure that the crowns fit 
comfortably inside the physical box, even if our manual picking imposes an error of several 
pixels. If you were using, say, a thickness parameter of 10 pixles in dtmslice, you have to count 
with at least this inaccuracy in the location of the particles. 
Now, we check that the catalogued tomogram contains the model that we manually picked 
before: 
close the GUI 

>> dcmodels fhv 

Passing to MATLAB… 

Volume 1. Matching models: 1 (total: 1) 

/i/embo2019/u/emboX/Prac-4/fhv/tomogram/volume_1/modules/mboxes.omd 

(ignore the openmpi error) 

Creating a table 
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We could just use the catalogue GUI to extract the particles, be it is also possible to proceed 
directly with the command line. We will use the  dtcrop command, .which requires preparing 
a table with the information of the model.  

m = dread('/i/embo2019/u/emboX/Prac-4/fhv/tomograms/volume_1/models/mboxes.omd'); 

t = m.grepTable(); 

Here, you read the file into a model object (which we arbitrarily choose to call m), and then you 
use the grepTable method on this object to extract a variable into your workspace. We 
arbitrarily call it t.  

>> dtinfo(t); 

  

        size                :  22 35  

        NaNs                :  0 

  

 COLUMN  

[  2  ] marked for alignment:  22 

[  3  ] included in average :  22 

[ 4-6 ] shifts              :  all zero 

[ 7-9 ] angles              :  all zero 

[  10 ] cross correlation   :  min: 0.00  max: 0.00  mean: 0.00  std: 

0.00 

[  13 ] Fourier sampling    :  1 (single tilt around y)  

[  13 ] fsampling types     :  all of the same type  

[14-15] ytilt range         :  min:120.00   max:120.00 

[16-17] xtilt range         :  min:120.00   max:120.00 

[  20 ] linked volumes      :  total 1 (labels: [1]) 

[  21 ] regions inside tomograms :  total 1 (labels: [0]) 

[  22 ] user-defined classes:  total 1 (labels: [0]) 

[  23 ] annotation types    :  total 1 (labels: [0]) 

[24-26] spatial locations   :  initialized: 22 

[  24 ]   *  x              :  min: 645.21  max: 1001.92  mean: 799.05  

std: 109.44 

[  25 ]   *  y              :  min: 23.78  max: 917.51  mean: 484.07  

std: 271.28 

[  26 ]   *  z              :  min: 198.00  max: 563.00  mean: 415.55  

std: 114.03 

[  31 ] original tags       :  total 1 (labels: [0]) 

[  32 ] compacted particles :  total 1 (labels: [1]) 

[  34 ] references          :  total 1 (labels: [0]) 

[  35 ] subreferences       :  total 1 (labels: [0]) 

[  36 ] apix                :  Warning: column not available in this 

table 



 8 

[  37 ] defocus             :  Warning: column not available in this 

table 

Using dtcrop 
The simplest syntax of dtcrop requires passing the name of the tomogram from which we want 
to crop (syntax varies for cropping from multiple tomograms). We know that the file is crop.rec, 
and we could directly insert this name in the command. But a catalogued model already contains 
information about its source tomogram (inside its property cvolume), so that we can always track 
it back. We could then define a variable tomogramFile by accessing this information inside the 
model variable m: 

tomogramFile = m.cvolume.file(); 

(ignore the warning message) 
and launch the cropping order: 

o = dtcrop(tomogramFile,t,'particlesData',128); 

The last part of the final output into screen should look like this: 

21 [read_subtomogram] Volume has size 1285 956 786 

[read_subtomogram] Accessing subvolume x: 713:840; y: 339:466; z: 

160:287  totalling ~ 16.0Mb 

Elapsed time is 0.191014 seconds. 

22  

Total time invested in cropping: 7s 

[table_crop] Done extracting 20 particles 

             from tomogram      :"/d/embo2019/u/emboX/Prac-4/crop.rec"  

             destination folder :"particlesData"  

             excluded particles : 2    

  

 [ok] table_crop  

informing you that some of the particles where excluded, as they were probably too close to the 
boundary of the tomogram, given the sidelength we asked for. Inside the created data folder, you 
will find the table particlesData/crop.tbl, which only indexes the actually cropped particles. 

Creating an average 
The particles can now be averaged together. They have different orientations, but in this 
tomogram we only have a fraction of the membrane.  

oa = daverage('particlesData','t','particlesData/crop.tbl'); 

dwrite(t,'raw.tbl'); 

dwrite(oa.average,'rawAverage.em'); 
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You can now look at the average with chimera - open another terminal and type ‘chimera’ 

Using the membrane to impart an orientation 
This section describes a method to compute: 

• a rough orientation of the particles, and 
• a rough first template 

In this section we will use the membrane of the mithocondrion to assign a roughly orientation to 
each of the points in the table. This orientation will be defined by the normal of the closest point 
in the membrane. The membrane will be defined as a a triangulation, to be constructed based on 
a set of manually picked points. 

Pick membrane points 
We open our tomogram in dtmslice 

\dtmslice @{fhv}1 -prebin 1 

In this variant of the syntax of dtmslice, the string @{fhv}1 just means "tomogram number 1 
inside catalogue fhv. On the opened scene, we will use a montage to manually click on a set of 
membrane points. 

 
It asks whether to keep or delete from memory the model pool: delete it. 

 
Opening a montage view 

By default, this montage represents slices taken orthogonally to z every 20 pixels of the 
unbinned tomogram. This can be changed in the settings before opening the montage GUI. Now, 
we can create a model of type Surface, which we will use to store a set of points in the 
membrane to be picked manually (or semiautomatically). To do this, go to Model pool> Create 
new model in pool (choose type) > surface  
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Creating a surface model 

You need to click on the point switcher (the control in the toolbar with a c and an i) to allow 
entering points. The basic controls are:  

• Mouse click to enter a point.  
• d to delete a point. 
• i to insert a point. 
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Point switcher must be toggle on to pick points into the model 

Use the >> button in the bottom of the GUI to go to next set of orthoslices. You do not need to 
pick every slice, but every 4-5 or so. 
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Controls of the montage GUI 

Note that the points that you click in the Montage GUI are assigned to a model in the pool, and 
as such, they appear automatically in the dtmslice GUI 

 
Points clicked in the montage GUI reflect in the tmslice GUI 

You also need shift + C in order to place a center inside the mithocondrion. This point is just 
used to tell Dynamo what is the inside and what is the outside face of the surface that we are 
building. 

 
shift + C marks an arbitrary interior point 
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Create a surface 
Now, we want to convert the points that we have introduced into a triangulation. This is a part of 
the workflow used to crop particles from membrane models, so we open the workflow GUI for 
this model in the Active Modelmenu tab.  

 
Invoking the workflow editor of active model 

We can first check the points currently contained in the model, by right clicking on the first 
viewing option and choosing the User points option. They will be depicted in a graphic window 
which will update with the new graphical elements that we depict there. 
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Showing original points in the model workflow GUI 

We first need to create a spline interpolation on each of the levels of our point cloud. 
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Control points are created by spline interpolation. 

 

To rotate the view, right-click on the graph, select the yz plane view, and click the rotate3D 
button. 
Now we define a triangulation on this control points. 
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Creating a triangulation on the control points 

Which can be subdivided to get a smoother appearance, and also a more accurate 
representation of the geometry. 
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A single round of subdivision smoothens the appearance of the lattice 

Then, we can change the name of the model for clarity, and then save it into the catalogue (with 
the disk icon in tmslice or the Save into catalogue options under the Active model menu). Use 
mySurface as your new name (do not use ‘membrane’). 

 
Renaming a saving a model into the catalogue 

Use a surface to impart orientation 
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We bring the model into our workspace. We search for it in the catalogue: 

dcmodels fhv -nc mySurface -ws output 

which will prompt the response  

Volume 1. Matching models: 1 (total: 1) 

/i/embo2019/u/emboX/Prac-4/fhv/tomograms/volume_1/models/mySurface.omd 

now, we can read the model file into our memory space to operate with it: 

\m = dread(output.files{1}); 

Now the model m is in our space of memory and can be used to impart an orientation to the 
points in our table. 

tOrientedBySurface = dpktbl.triangulation.fillTable(m,'raw.tbl'); 

In this table, orientations are orthogonal to the membrane (or more precisely, orthogonal to the 
closest triangle in the mesh that represents the membrane) 

 figure; 

dslices('particlesData','t', tOrientedBySurface,'projy','c20','align',1,'labels','on'); 
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Slices along the xz plane as seen by the table 

tConsistent = 

dynamo_table_flip_normals(tOrientedBySurface,'center',m.center) 

We can check the effect of this table on the particles through: 

figure;dslices('particlesData','t', 

tConsistent,'projy','c20','align',1,'labels','on'); 
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Slices along the xz plane as seen by the table, after using the center point to establish the interior side of 

the surface 

To get a better graphical impression, we can depict our surface (contained in the model m) with: 

m.ezplot  

and choose the Surfaceoption 



 21 

 
Easy way to get all defined plots of a model object. 

Then, we just plot the positions of the particles on the same graphical figure: 

dtplot(tConsistent,'m','sketch','sketch_length',100,'sm',30); 
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dtplot directs its output on the last active figure 

Management of the missing wedge 
When we create a table considering only the orientations of the points with relation to a 
membrane, there is no particular preference for rotations of the particles about the normal 
direction (i.e., azimuthal directions). The narot angle in this table is initialized to zero 

Thus, take into account that an average created on these particles will have a strong missing 
wedge, especially in our case, where we have a preferential direction. This can be checked by 
averaging the particles against this table: 

oa=daverage('particlesData','t', tConsistent,'fc',1); 

Here, we ask ('fc',1) to run a Fourier compensation step, so that we can check in the 
output oa the property fweight, which contains the number of times a Fourier component is 
represented in the average. Bright values mean that the Fourier component is present in many 
particles (yielding thus an average of better quality for the involved frequencies). 

dview(oa.fweight); 
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Fourier component presence without azimuthal randomization 

We can atenuate this effect by randomizing the rotational angle: 

tConsistentRandomized = dynamo_table_randomize_azimuth( tConsistent); 

and averaging again. 

oaRandomized=daverage('particlesData','t', tConsistentRandomized,'fc',1); 

Now, the fweight map doesn't show such a strongly preferential orientation: 

dview(oaRandomized.fweight); 
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Fourier component presence with azimuthal randomization 

The effect in direct space can be shown by depicting both averages (with and without 
randomization side to side) 

dmapview({oa.average,oaRandomized.average}); 
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The map on the left shows a worse definition and clear traces of missing Fourier components 

Project for rotational alignment 
We have now a template and a coherently defined metadata (i.e. table) that align the particles 
coarsely along the right direction. We write them into disk:  

dwrite(tConsistentRandomized,'zOriented.tbl'); 

dwrite(oaRandomized.average,'zOriented.em'); 

 
and create a project with these files. Note that the data folder remains unchanged. 

dcp.new('zOriented','d','particlesData','template','zOriented.em','masks','

default','t','zOriented.tbl'); 

In this project, we will ask for a symmetrization 'c57'.. this is just to simulate fully rotational 
symmetry. We are not assuming that this symmetry is physical: we just want to force any 
possible symmetry axis in the data along the z axis. We also keep binning twice the particles, in 
order to get the computation times short. 
On the numerical parameters tab edit as shown in the picture below: 
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Alignment parameters in zOriented 

And on the computing environment: 
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Check, unfold, and run the project: 

This will take a few minutes. You can check the progress by typing (on a different terminal 
window): 
tail -f projectname/log.txt 
The result shown an incipient formation of the crown...  
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Result in  zOriented 

and barely identifialble in Chimera: open a new terminal, go to the folder 
zOriented/results/ite_0003/averages/ and type 
chimera average_ref_001_ite_0003.em 
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Alignment parameters in localized project 

Project for localized alignment 
We don't see clearly what is happening on the area of interest... On one hand we know that we 
are using a very reduced number of particles ( which on top of it are too similarly oriented). But 
there is still some room to improve in the approach: we can focus the refinement in the area of 
interest. 

Creating a tight mask 
We want to create a mask that encloses the area of interest. To this end, we open the average 
in dmapview, by transferring it from dview (Export) or just asking ddb to pass the average 
directly to mapview 

ddb zOriented:a:ite=3 -m 

We tune the browser for viewing along y, and we select one of the central slices.  
Then, we select the area that we want to use as seed in this plane to create a revolution solid. 
Change orthoslices to 64/64. We press on [shift] + [s] on the selected slide, letting a new 
window pop up. In this window, you handdraw an area on the XZ plane (left click to start drawing, 
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right click to stop). Dynamo will rotate the region about the z axis, creating a revolution solid into 
the file temp_drawn_revolution_mask.em 

 
Drawing a revolution mask. 

We have to change the default name given by Dynamo to a relevant one: 
!mv temp_drawn_revolution_mask.em teethMask.em 

and now continue the previous project by transferring the results of zOriented to a fresh project 
(lets call it localized) 

dynamo_vpr_branch zOriented localized -b 1 -noise 0 -ite 3 

 

dcp localized 

 
 
and insert the tight mask teethMask.em that we just created as alignment mask of the project. 
(click on masks and browse the alignment mask). Note that we do not want impose any 
symmetry in our parameters, and we want to reduce the binning (particle size = 64): 
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Alignment parameters in localized project 

Let's inspect the output: 
ddb localized:1 -m 

 
Last average in project localized as shown by dview 

There are different things that we like in this average 
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Last average in project localized as shown by mapview 

 

1. Last average in project localized as shown by mapview The localized masking worked 
well, producing a clearer insight into the region of relevance 

2. Although we are using signal only inside the mask, the material outside of the mask does 
'not become smeared. This is clear mark that the alignment is real and non artifactual. 
That's an important point to check when we use small masks. 

3. The symmetry in the area becomes apparent on the bare eye. They can be distinguished 
clearly with mapview and even in Chimera. 
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Testing the symmetry 
We can check for different symmetry operators to confirm the presence of symmetry.  
Basic command 
The basic command for this task is dynamo_symmetry_scan. In its fundamental syntax, you 
need to state the type of symmetry operator to be tested, and a set of operator. 

 stm = 

dynamo_symmetry_scan('localized:a','c','order',3:15,'type','pearson','nfig'

,3);  
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Symmetry detected for different masks 

With a more localized mask: 

 slm = 

dynamo_symmetry_scan('localized:a','c','order',3:15,'type','pearson','mask'

,'teethMask.em','nfig',4); 
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Symmetry detected for different masks 
Interpretation of results 
If you got the results above, you might have jumped to the conclusion that they already constitute 
an objective hint at a real C12 symmetry. This is, however, not true. The fact is that, with a 
slightly different picking of particles, you could have obtained the profiles in these pictures: 

 
 

Symmetry merit plot (local mask) 
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Symmetry merit plot (global mask) 

These images represent the result of the two symmetry-exploring commands described above 
obtained by a different user. . Surprisingly, they point at possible symmetry orders of 11 and 13. 
So, what is going on here? How is it possible that two different users that operate exactly the 
same walkthrough get contradictory symmetry estimations? The reason is that different users will 
pick manually slightly different particle centers, and this have a direct impact on the symmetry 
estimation. In short, the problem is that the density map localized:a is not garanteed to have 
its possible symmetry axis located along the center of the box, and this 
misleads dynamo_symmetry_scan. This can bechecked by opening the average 
in mapview and overlaying the file 'teethMask.em' on it. 

 
Mapview map n file localized:a overlayed with file 'teethMask.em' 

In this non-centered density map, any symmetry determination can only be an artifact. To solve 
this, we create a centered version:  

ddb zOriented:a -r zo % extract average of zOriented as the ws variable 

zo 

ddb localized:a –r localizedAverage % extract average of localized as 

the ws variable localized Average 

sal = 

dalign(localizedAverage,zo,'cr',0,'cs',30,'ir',0,'dim',64,'limm',1,'lim

',[20,20,20]); % aligns localizedAverage against zo (like that 

localizedAverage is centered) 

centerLocalized = sal.aligned_particle; 
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dview(centerLocalized);  

 
Recentered average (x and y views) 

We can scan again the symmetry operators on the recentered volume. 

 slmCentered = 

dynamo_symmetry_scan(centerLocalized,'c','order',3:15,'type','pearson','mas

k','teethMask.em','nfig',4); 

 
'teethMask.em' overlayed on the recentered average 

 
Symmetry merit plot after recentering 
using 'teethMask.em' 

Now the peaks located that at 6 and 12 are trustworthy. You can even create a new mask on the 
recentered average, carefully excluding intensities from the central ring structure to completely 
rule out any artefact.  
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Mask constructed ad hoc on the recentered average 

 
Symmetry merit plot using  ad hoc constructed 

mask 

Subboxing 
The subboxing technique consists in redefining the area of interest inside a previously defined 
average. In this example, we have use the full crowns as the subject of alignment and averaging. 
This has allowed us to use the whole signal carried by the full crown on each of the particles to 
drive the alignment robustly. This approach, however, will not allow us to identify heterogeneity 
and flexibility inside the individual crowns. Additionally, the possible hetereogeneity inside the 
crown will decrease the quality of the alignment when the crown is treated as a whole.  
With the subboxing technique, we can use our previous results to setup an approach that centers 
the alignment on the individual teeth. Each one the particles in our new data set will be 
a subbox (a tooth) extracted from the previos box (the crown) using the alignment parametes for 
the full boxes gained by the projects that we have ran so far.  

Defining a subboxed subunit 
First, we need to define the location that we want to subbox. We use mapview 

dmapview localized:a  

to show the last average in the project localized 
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Selecting the center of the tooth subunit with mapview 

You probably want to explore several views in mapviews (x'/'y' and 'z') to make sure you 
(roughtly) hit the center of the subunit of interest. Guiding yourself only for a view on z can be 
misleading. 

 
Selecting the center of the tooth subunit with mapview on the y view 
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. 
As we are in this browser, we can check the size of the subunit that we want to subbox, using the 
two markers C and N. This will be useful later when we want to actually crop physical particles 
using dtcrop, when we will be required to input a sidelength for the subboxed data folder. 

 
Measuring distances in mapview 
. 
We define a variable to contain the position that we read in mapview for the blue (North) anchor.  

rSubunitFromCenter = [88,80,53 ] - [64,64,64];  

We subtract the half sidelength of the full box, because the next command will need the position 
of the asymmetrical unit expressed in relation to center of the box. 

Creating a subboxing table 
We extract the last refined table:  

ddb localized:rt -r t 

and define positions related by C12 symmetry along the axis 

ts = dynamo_subboxing_table(t,rSubunitFromCenter,'sym','c12'); 

The new subboxed table ts will have 12 times as many rows as the original one. The system of 
reference on each particle will point z in the direction of its original box, but 
the x and y orientations of each tooth will be symmetrically related in the same crown. We can 
depict this geometrical relationship by plotting a sketch of all the particles in the table: 
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figure;dtplot(ts,'m','sketch','sketch_length',100,'sm',30);view(-

151,12);axis equal; 

 
Sketch of orientations of the new subboxed table ts 
. 
Creating a subboxed data folder 
Now we have all we need to go back to the original tomogram and crop the subboxed particles 
into a new data folder using the sidelength that we checked with mapview: 

dtcrop('crop.rec',ts,'subboxData',32); 

We can run our typical sanity check to ensure that everything ran correctly 

osb = daverage('subboxData','t',ts,'fc',1); 

To visualize it you can write:  
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 dview(osb.average); 

 
Density map of the average of subboxed teeth 
. 
As it looks like we expected, we just write it into a file, which we will use to define a new project. 

dwrite(osb.average,'subboxRaw.em'); 

Defining masks 
There are some tools to quickly format masks for project. If we want to check a reasonable 
radius for our mask, we can use the dsphere command and overlay the created mask on the 
template  

cs = dynamo_sphere(10,32); 

figure;dslices(osb.average,'y','ov',cs,'ovas','mask'); 

figure;dslices(osb.average,'ov',cs,'ovas','mask');  
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Testing the radius of created masks by overlay on template 
. 
In fact, this mask is probably too risky: we need a minimum of signal to drive the alignment  

dwrite(cs,'maskTooth32.em'); 

Subboxing project 
We create the project through: 

dcp.new('subboxBig','d','subboxData','template','subboxRaw.em','masks','def

ault','t','subboxData/crop.tbl','show',0); 

In this case, we use  'show' 0 would suppress the dcm GUI. We use typically this option when 
we want to enter project parameters through the command line. This is exactly equivalent to 
entering parameters through the GUI.  

dvput subboxBig mask maskTooth32.em 

dvput subboxBig ite_r1 3 

dvput subboxBig cr_r1 4 

dvput subboxBig cs_r1 2 

dvput subboxBig ir_r1 4 

dvput subboxBig is_r1 2 

dvput subboxBig rf_r1 2 

dvput subboxBig rff_r1 2 

dvput subboxBig dim_r1 32 

dvput subboxBig lim_r1 [4,4,4] 

dvput subboxBig limm_r1 1  

A list of the names of the parameters can be displayed through the command dvhelp. The 
computing environment is set using the destination parameter, shortnamed dst. To run it in 
matlab use: 
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 dvput -dst matlab_parfor 

For standalone running, use: 

 dvput -dst standalone 

After running the project, we can check the effect of the independent refinement of the "tooth" 
units: 

ddb subboxBig:a:ite=[0,3] -m  

 
Slice-to-slice comparison of initial template and final average of the subboxing project 
. 
or send the average to Chimera through: 

ddb subboxBig:a -c  
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Density map of the average of subboxed teeth after refinement 
. 

Visualization 
You can continue working on this data in the Walkthrough on creation of 3d scenes, where you 
will learn to depict tomgraphic slices, place templates in table positions, and depict graphical 
elements representing model geometries. 

 


