Model building and refinement with high-resolution cryo-EM data

EMBO cryo-EM course

Birkbeck College, London, UK 11 September 2019

Why do we need model refinement?

General aspects of fitting strategies

- Conformational search (x,y,z,ψ,θ,ρ)
 - orient components in EM density (rigid)

 $\frac{\delta}{dr}
ho(r)$

- sample and score conformations different from template structure (flexible)
- Fitting potentials

0 x0 0 0 0 0 0

$$E_{tot} = E_{bond} + E_{angle} + E_{dihedral} + E_{vdW} + E_{coulomb} + \dots$$

• External restraints

0 0 0

- constraints from alternative methods (SAXS, FRET, mass spectometry)
- subunit composition and stochiometry
- interaction restraints
- structural quality parameters

Atomic model refinement in a nutshell

Goal: Fit chemically and structurally consistent models into Coulomb potential maps

Scoring of fitted models

Correlation of simulated and experimental density

Quality-of-fit measure:

Refinement target:

$$CC(T) = \frac{\sum_{ijk} \tilde{\rho}_{\text{model}} \left(\vec{a}_{ijk}\right) \tilde{\rho}_{\text{target}} \left(\vec{a}_{ijk}\right)}{\sqrt{\sum_{ijk} \left(\tilde{\rho}_{\text{model}} \left(\vec{a}_{ijk}\right)\right)^2 \sum_{ijk} \left(\tilde{\rho}_{\text{target}} \left(\vec{a}_{ijk}\right)\right)^2}}$$

$$E_{\rho} = 1 - CC = \min \int (\rho_o - \rho_c)^2 dv$$

Real space or Fourier space?

Refinement in real-space and Fourier (reciprocal) space are equivalent

Restraints – what do we know about macromolecules*

- Proteins consist of atoms that are bonded to each other in a specific way
- Proteins tend to form secondary structures
- Two (or more) molecules with sufficiently high sequence identity are likely to be similar to each other in 3D
- It is likely that if there are two copies of the same molecule they will be similar to each other (at least locally)
- Oscillation of atoms close to each other in 3D cannot be dramatically different
- DNA/RNA tend to form base-pairs and stacked bases tend to be parallel

All this information can be translated into restraints to restrain refinement

Restraints stabilize refinement, ensure that the final model is consistent with prior knowledge and reduce the chance of overfitting.

*Garib Murshudov

Summary: sources of prior information (restraints

Rotamer distributions

Stereochemistry

(NCS) symmetry

Reference restraints (Jelly Body, DEN, ...)

Similarity restraints (ProSMART, ...)

Secondary structure restraints

Distances between hydrogen-bonding atoms in protein helices and sheets or nucleic acid base pairs can be restrained.

 β -sheet

Hydrogen bonding pattern

 $\begin{array}{ll} \alpha \text{-helix} & \text{n+4} \\ \textbf{3}_{10}\text{-helix} & \text{n+3} \\ \text{pi-helix} & \text{n+5} \end{array}$

Helps keep regular structure from unravelling during refinement

Secondary structure restraints

CaBLAM

Low-resolution structures are vulnerable to errors in peptide plane orientation.

Comput. Crystallogr. Newsl. 4:33-35

Fuzzy constraints

Tools

Manual model building

Coot iSOLDE (interactive molecular dynamics)

Automatic model building

Buccaneer ArpWarp Phenix.map_to_model Rosetta

Model refinement

Refmac Phenix.real_space_refine Rosetta

Other Tools

ProSMART LibG ACEDRG Molprobity Paul Emsley Tristan Troll

Kevin Cowtan Victor Lamzin Tom Terwilliger Frank di Maio

Garib Murshudov

Pavel Afonine Frank di Maio/David Baker

Rob Nicholls Fei Long Fei Long Jane Richardson

When likely everything will just work...

Wim Hagen

...and when it may be more challenging

9 - 7 Å

5 - 6 Å

RNA Pol III (open) EMD-3180 I PDB ID 5fja

< 4.0 Å

Common challenges for cryo-EM structures

Resolution variation

Single refinement strategy may not be appropriate

- Segmented refinement
- Local weight refinement

Coupling restraint weighting to local resolution

Refinement statistics

	global	local
Ramachandran (%)		
favoured allowed disallowed	78.32 13.36 8.23	85.52 13.25 1.23
Rotamer outliers (%)	17.4	2.1
C-beta deviations	68	0
Clash score*	28.6	13.4
MolProbity score	3.24	2.38

*(Σvdw overlaps)/1000 atoms

- Local determination of refinement target weights improves model geometry
- Currently done in "area-mode", but could be done on per-residue basis

Nature **528**: 231-239 (2015) *FEBS* **283**: 2811-2819 (2016)

Defining a strategy for model refinement

Optimal strategy may (and probably will) differ in each case!

Resolution variation in cryo-EM maps

Local filtering

Localized Fourier correlations

Generation of adaptively filtered maps

Not taking care of varying contrast loss

Amplitudes and image contrast

Image

Relative scaling of low vs. high frequency amplitudes determines image contrast

Amplitudes

Radially averaged amplitudes

Contrast loss

Variability owing to heterogeneity and computational inaccuracies during reconstruction cause blurring of the signal in the map \rightarrow contrast loss

Map sharpening

Restore amplitude contrast by sharpening with: $F_{sharp} = F_{obs} \cdot e^{-B(1/d \min)^2}$

Map blurring

Maps can be over-sharpened. Blurring can be used to improve over-sharpened maps.

2.4

2.2

2.6

Nicholls et al., Acta Cryst D Struct Biol 74: 492-505 (2018)

Effects of amplitude scaling on image contrast

Local variation of map B-factors

Local B-factor variation

Local resolution correlates with ADPs

elongating Pol III

apo Pol III (closed)

Map sharpening by reference-based amplitude scaling

eLife 6: e27131 (2017)

Local sharpening by reference-based amplitude scaling

Local sharpening by reference-based amplitude scaling

How do we evaluate optimal sharpening?

- The map should provide maximum level of detail
- The map should show expected features of macromolecular structures

Secondary structure imposes characteristic deviations on amplitude profiles

Comparing different sharpening methods

Comparing different sharpening methods

Example 1 – β -galatosidase at 2.2 Å

Example 1 – β -galatosidase at 2.2 Å

Example 2 – γ -secretase at 3.4 Å

Example 2 – γ -secretase at 3.4 Å

Example 2 – γ -secretase at 3.4 Å

Visualization & automatic model building

More examples

EMD-6287 (LocScale)

3.0σ

EMD-6287 (global sharpening)

Availability and CCP-EM

Source and command line tool:

Much nicer (with GUI):

http://git.tudelft.nl/jakobi/locscale

http://www.ccpem.ac.uk/download.php

Thanks to:

Tom Burnley

GUI & pipeline

Colin Palmer

OpenMPI support mrcfile.py

Other map sharpening tools

Global sharpening:	Any 3D refinement program (Relion, cryoSPARC, EMAN2, SPHIRE, XMIPP,
Local sharpening:	phenix.auto_sharpen (part of PHENIX) Terwilliger et al., <i>Acta Cryst D Struct Biol</i> 74 (2018)
	LocalDeblur (part of Scipion) Ramirez-Aportela et al., <i>BioRxiv</i> (2018)
Interactive sharpening:	MRC2MTZ (part of CCP-EM) Burnley et al. <i>Acta Cryst D Struct Biol</i> 74 (2018)
	Coot Emsley et al. <i>Acta Cryst D Struct Biol</i> 66 (2010)

)

Validation of map features

 We want to determine which density features result from true signal and not from amplified noise

When is signal really signal? Hypothesis testing

This can be problematic if you have to do many tests...

Example: 20 tests, p = 0.05

What is the probability of observing at least one significant event just due to chance?

- P(at least one significant event) = 1 P(no significant event)
 - $= 1 (1 0.05)^{20}$
 - ≈ **0.64**

 \rightarrow There is a 64% chance to obtain one significant result just due to chance

Confidence maps by False Discovery Rate control

IUCRJ 6: 18-33 (2019)

Maximilian Beckers

Confidence maps allow detecting weak signal

Confidence maps – γ -secretase

LAFTER maps: map denoising

- Local Agreement Filter for Transmission EM Reconstructions
- Compares half maps to identify shared features
- Preserves shared signal, suppresses noise
- Two-pass real space filter
- For map visualisation & model building – not refinement

Christopher Aylett

EMD-3048

Ramlaul et al., J. Struct. Biol. 205: 30-40 (2019)

Slide courtesy Colin Palmer

Effect of LAFTER

High contour: strong features remain similar

Low contour: weak features are very different. LAFTER removes noise

EMD-2847

Slide courtesy Colin Palmer

Validation

With great insight comes great responsibility...

Structure Resource

High-Resolution Cryo-EM Maps and Models: A Crystallographer's Perspective

Alexander Wlodawer, 1,4,* Mi Li,1,2 and Zbigniew Dauter3

¹Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA ²Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA ³Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, NCI, Argonne National Laboratory, Argonne, IL 60439, USA ⁴Lead Contact

*Correspondence: wlodawer@nih.gov http://dx.doi.org/10.1016/j.str.2017.07.012

Model vs. map cross-validation

Falkner et al. *PNAS* **110**: 8930-8935 (2013)

Useful tools for model validation

TemPy/CCP-EM (www.ccpem.ac.uk)

- Many useful validation tools
- Difference maps

Coot (https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/)

Useful tools for model validation

Molprobity (http://molprobity.biochem.duke.edu/)

Comprehensive stereochemistry validation

Helps you to resolve:

- Steric clashes
- Geometry outliers
- NQ flips

EMRinger (http://emringer.com/)

Assesses quality of model-to-map fit of models from cryo-EM using map value interpolation f side chain rotameric positions.

Reporting validation statistics

"Table 1"

Extended Data Table 1 | Refirement statistics

	Elongating Pol III	Apo Pol III (closed clamp)	Apo Pol III (open clamp
Model composition		54	
No. of chains	17+3	17	17
Non-hydrogen atoms	30276	38677	.98427
Prolain residues	4839	4882	4845
Nucleic acid	47	640 M	
Ligand (Zh ³ ")	6	6	9
Refinement		1.1	
PDB ID	51(8	5/19	5fja
Resolution (A)	200.2-3.9	260.2-4.0	2602-4.7
Map sharpening B-factor (Å ²)	-100	-136	-140
Average B-factor (A?)			
Protein	64.9	161.8	182.0
Nucleic acid	70.0	-	
Ligand (Zn2*)	58.6	62.4	107.9
Molprobity score	2.6	2,58	2.48
Clashscore (all atoms)	14.5	13.41	13.84
Rotamar outliers (%)	2.00	2.08	1.5
Ramachandran statistics			
Favored (%)	82.46	82.52	82.58
Disallowed (%)	1.15	1.22	1.03
RMS (bonds, Å)	0.0032	0.0052	0,0020
RMS (angles, "	1.03	1.01	0.89
Nucleic Acid			
Conect sugar puckets (%)	81.5	1 E 1	8
Good backbone conform, (%)	68.7	100	

Be specific if reality is complex

Extended Data Table 2 | Model statistics for elongating Pol III

Subunit	Protein	Chain ID	Mw (kDa)	No. of residues	Residues built	Chain breaks	All-atom clashscore	Molprabity score	Average B- factor (Å*)	Local resolution (Å)
Core		-	1.20			100	1.000	1.1.1.1		T.Se.
RPC1	C160	A	162.5	1460	1422/97 4%	3	10.42	2.24	56.15	38
RPC2	C128	8	129.5	1149	1115 (97.0%)	-	1261	2 40	50.10	38
RPC40	AC40	c	17.7	995	335 (100%)		10.60	2.40	60.42	3.8
RAPS	ABC27	E.	25.1	215	215/100%)		1607	2.61	67.97	41
RRPH	49023	8	17.9	155	R9 (69.5%)		3.87	2.34	57.37	36
REPS	ABC14.5	Ĥ	16.5	145	140 (95.9%)		9.05	2.15	62.64	42
BPC11	Cit	1.16	12.5	110	43 (39,1%)	-	1600	2.73	73.40	4.5
RBP10	ABC108	1.4.1	8.3	73	63 (97%)	-	5.10	2.59	56.79	3.6
RPC10	AC19	ĸ	16.1	142	101/71 151	112	8.85	2.41	59 38	37
RPC10	ABC10ix	î	7.2	70	46 (65,7%)		1213	2.65	67.30	4,2
Stalk		1 A I	1000			1.00		1.1		1 C
RPC9	Ct7	D	18.6	151	119/73.9%	2	15.82	2.51	73.39	4.4
RPC8	C25	G	34.3	212	191 (90.1%)	2	1688	2.17	70.93	4.3
leturotrimer	1.0		1.00			1.11		1.1571		
RPC3	C32	0	74.0	654	539 (82.4%)	2	15.99	2.66	73.08	4.5
RFCB	C34	P	36.1	317	88 (26.1%)	2	26.41	3.54	75.04	5.3
RPC7	(231	0	27.7	251	63 (25.1%)	2	10.13	2.13	76.51	4.6
leterodimer				1.1.1		1.1		1. 1. 1. 1		
RPCS	C37	M	82.1	292	164 (58.2%)	1	11.72	2.59	74.18	43
RPC4	(33	N	46.7	432	110 (26,1%)	1	12 10	2.58	71.51	42
RNA	RNA	R		18	9 (50.0%)	-	1.00	1.22	75.00	3.9
DNA	Non-Templale	S		38	15 (39.5%)	100			75.31	3.9
DNA	Template	T	1.000	38	.23 (60,5%)	-	and the second s		78.03	3.9

Help your reviewers...

wwPDB Validation Service

Existing usidistion	1	wwPOB news and annotate	sementa	
aldAlinn O	Providence with prove assistance			
0	comprende will der in eigenwar			
sword	wwPCB has resided to privacy goint in line with the	requirements of the EU's GDPH legal	ation	
0				
	0	Start a new validate	n	
og in				
	Weacone to the averPDB validation costoms			
forget Passwori	This earlier runs the performance same validation as and experimental files prior to start of deposition.	you would observe curing the deposit	tion process. This service is designed to be	ila kon quack Jami, wid
Deposition survey	To commue with an existing validation, please loging	at the eff.		
	To start a new reliencer, plasse complete the form of	eriew: Upon composition, you with tru per	nameling a promission appendix to your rans	- weinderige
posit your data to PDB, BMRB and	and the second se			
OB at posit/wwpdb.org	Tour e-mail address			0
	Password (optonal, or we will provide one) The te administration observed? (6 to 18 datageneric sha accent)			0
	Country	Select		0
	Experimental worhod			
	Giller (Stransmi			
	Electron Mathematica			
	STRUCTURE			
	New Joseph Datteschere			
	DecromGrystalography			

Useful resources

http://www.ccpem.ac.uk/courses/

CCP-EM C		ollaborative (for Electron	Computational Project		MRC	
lome	About CCP-EM	CCP-EM Projects	Downloads	Resources / Documentation	Workshops / Courses	Symposium
	Icknield	Workshop: N	Aodel Build	ding and Refinemen Maps	it using cryo-EM	F .
	Course kindly hosted a	t RAL by DLS April 2019				
	Schedule					
	Schedule					
	Lectures					
	CCP-EM: Tom Burnley	Re C				
	Introduction					
	LocScale: Arjen Jakobi					
	Map sharpening tools /	or cryo-EM density maps				
	Buccaneer: Kevin Cow	tan				
	Model huilding in Bucc	Anner and Nautilus				
	MolProbity: Jane Richa	ardson				
	Validating CryoEM mod	tels from diagnosis to heali	ng			
	ARP/wARP: Grzegorz	Chojnowski				
	Model building into hig	h resolution cryp-EM map				
	Coot: Paul Emsley					

CCP-EM symposium proceedings *Acta D*

http://cryoem.tudelft.nl/software http://gitlab.tudelft.nl/aj-lab

rsref

caref is a scripted modular workflow for the refinement of atomic models against high-resolution cryo-EM density maps. It is a not a standalone refinement software, but rather provides a set of tools for model and/or map manipulation, refinement protocols, the analysis of the refinement cycles and validation of the resulting coordinate models.

rarer makes use of the libraries from the colox project.

Availability:

xmper is an ongoing development and not officially released. If you are fine with limited support, please see the Wiki pages for dowload and usage instructions and tutorial.

If rsref is useful for you work please acknowledge the octox project (doi)

Summary

- Atomic model building and refinement are now an important part of the cryo-EM structure determination process
- Resolution variation in cryo-EM maps still poses many challenges for model building (and refinement)
- Optimal map sharpening and/or filtering is not trivial
- Local filtering or sharpening (and LAFTER denoising) can serve to visually improve poorly resolved map regions for model building (and refinement)
- FDR thresholding may provide more objective way for map thresholding
- Many challenges remain, but tools are becoming better
- Validation is still an open field, but important initiatives have started

Availability of tools shown:

https://git.tudelft.nl/jakobi/ http://cryoem.tudelft.nl/software

Acknowledgements

Müller Gang @ EMBL

Carsten Sachse

CONTRACTOR

MRC-LMB Garib Murshudov

CCP-EM

Tom Burnley Colin Palmer Agnel Joseph

Participants of the CCP-EM Icknield & Madrid workshops

https://pypi.python.org/pypi/mrcfile https://pypi.python.org/pypi/clipper-python/ http://cctbx.sourceforge.net/

