Basic concepts of Fourier Analysis

EMBO Course on Image Processing for Cryo-Electron Microscopy 2019

g.zanetti@mail.cryst.bbk.ac.uk

Every function can be expressed as the sum of sine waves

Every function can be expressed as the sum of sine waves

Sine component n

Cumulative sum

Quote: "The profound study of nature is the most fertile source of mathematical discoveries"

Natural Fourier analysers

period or wavelength: units necessary to describe one cycle (in case of images these are space units, e.g. nm, or pixels)

amplitude: maximum value of the sine function (in case of images these are greyvalues, or brightness)

phase: defines the x position of the "zero", i.e. the relative position of a wave with respect to one where y(0)=0. Defined as an angle (degrees or radians)

Alternative representation of sine functions: the projection on y of a point undergoing circular motion describes sinusoidal oscillations.

Each component sine wave has a certain frequency, amplitude, and phase.

For a given frequency there is one component sine wave (as if you combine sine waves with the same frequency you obtain another sine wave)

We can describe a function by defining amplitudes and phases of all its components as function of frequency.

We can represent f(x) as $Ae^{i\phi}$ of all its components as function of frequency = **FOURIER TRANSFORM**

Euler formula

Intensities of FT are always centro-symmetric

Images = 2D functions (grey-values/brightness VS space)

low frequency components

high frequency components

Fourier Inversion Theorem

The FT of the FT of a function recovers the original function

A fundamental property in image processing as we can perform operations on the image OR on its transform according to convenience.

Summing images

Multiplying images

Multiplying images

Convolution is multiplication in Fourier space

Elena Orlova's lecture

Digital Images and Fourier Transforms

We need an infinite amount of Fourier components to represent a discrete function

Digital Images and Fourier Transforms

The Nyquist limit

1

2*pixels

Nyquist frequency

A formula to relate real and reciprocal space

box = size of your image (=size of FT)

R = distance from center of FT

pixelsize = size of one pixel in the real image

resolution = spacing (wavelength, period) corresponding to the spatial frequency being represented at radius R in the FT

$$\frac{box}{2} : R = \frac{1}{2^* pixelsize} : \frac{1}{resolution}$$

Applying filters in Fourier space

Low-pass filter

Applying filters in Fourier space

High-pass filter

50 cm

750 pix

Low-pass filtering

filter_resolution = 2 cm box = 750 pixels pixelsize = 0.067 cm/pixel R = 25 pixels

filter_resolution = 10 cm box = 750 pixels pixelsize = 0.067 cm/pixel R = 5 pixels

50 cm

FT-1

FT⁻¹

High-pass filtering

filter_resolution = 10 cm box = 750 pixels pixelsize = 0.067 cm/pixel R = 5 pixels

filter_resolution = 2 cm box = 750 pixels pixelsize = 0.067 cm/pixel R = 25 pixels

Shifts and Rotations

The amplitude spectra are the same. The phases are different though!

What happens if the phase is inverted?

Are phases or amplitudes more important?

Match the image with its FT

Fourier transform of 3D functions

The 3D structure of a macromolecule is described as electron potential as a function of x,y and z (the MAP)

We can calculate its Fourier Transform

Fourier transform of 3D functions

The 3D structure of a macromolecule is described as electron potential as a function of x,y and z (the MAP)

We can calculate its Fourier Transform

Projection theorem

Projection theorem

To calculate a 3D One could 'back-project' in real space or intersect the FTs of all projections

Weighted back-projections: need of weighting down low resolution

weighted backprojection

Reconstruction – <u>weighted</u> backprojections

Anisotropy

What if we do not have projections from all angles? Incomplete Fourier sampling (e.g. tomography)

Distribution of information in Fourier space of a tomographic reconstruction:

 missing wedge (anisotropy)

original image

anisotropic

The Crowther criterion

D=20 nm

d = 0.715 nm

m = 87.83 => increments of 360/87.83 = 4.09°

How to resample maps

You have a map downloaded from EMDB, which has a pixel size of 1.7 A/pixel and a box size of 128³ pixels.

You want to use it as a starting model for your new dataset, which was collected at 1.3 A/pixel and was extracted in 160² pixel boxes.

How do you resample your map? (not with relion_image_handler...)

towards objective lens and detector

towards objective lens and detector

Unscattered wave

Scattered wave at angle $\boldsymbol{\theta}$

destructive interference

Scattered wave at angle $\boldsymbol{\theta}$

destructive interference

Scattered wave at angle $\boldsymbol{\theta}$

constructive interference

θ'

constructive interference

For a given spacing between scattering objects, there is one angle at which scattered waves are in phase with each other and produce a signal. The smaller the spacing the higher the angle.

Diffraction

Fourier Transformation

When do we need to think in fourier space

High and Low-pass Filtering, denoising

CTF detection and correction

Spectral SNR considerations (relion T value, Wiener Filter)

Resolution assessment (Fourier Shell Correlation)

Sharpening

...and at almost every step in image processing!