

Samples for cryo-EM

What is it?

• Sample is frozen in a layer of vitreous ice

What is vitreous ice?

- amorphous i.e. non-crystalline
- · sample preserved in solid solution-like state
- (ice crystals destroy samples)
- means it can be placed in vacuum of EM column
 - (low temperature must be maintained)

7

• (some) cryo-protection from radiation damage

How is vitreous ice formed?

- Quickly <1ms: estimated cooling rate of 10⁵ 10⁶ K/s Dubochet et al (1988) Quart Rev Biophys 21, 129
- Forms below ~-160° C at atmospheric pressure
- Thin (<3µm) sample is required for rapid freezing: ice is a poor thermal conductor

Cryo-EM

Preserving vitreous ice

Vitreous ice is metastable and readily converts to other forms of ice so grids must be maintained at <-135° C

 hexagonal ice crystalline, forms as water cools @ atmospheric pressures likely to form e.g. on cold apparatus (a big problem in a humid atmosphere)

cubic ice

crystalline, formed as vitreous ice warms above ~-135° C

• both crystalline forms of ice are less dense than liquid water; their expansion can damage biological sample as they form 8

Dubochet et al (1988) Quart Rev Biophys 21, 129

Sample									
 establish conditions for sample stability before cryo-EM poor contrast (~density of vitreous ice (0.9g/cm³) vs protein (1.3g/cm³)) NB: thinner ice: better contrast but consider surface effects need more sample than for negative stain (~3-5mg/ml) Number of particles in projection/µm² in 800 Å thick ice film (separation) 									
MW	Concentration								
10 kD	48000 (45Å)	10000 (100Å)	2500 (200Å)	500 (450 Å)	100 (1000 Å)				
50 kD	10000 (100Å)	2000 (220Å)	500 (400Å)	100 (1000Å)	20 (0.2µm)				
250kD	2000 (220Å)	400 (500 Å)	100 (1000 Å)	20 (0.2um)	4 (0.5um)				
1 MD	500 (400Å)	100 (1000Å)	25 (0.2µm)	5 (0.4µm)	1 (1µm)				
5 MD	100 (1000Å)	20 (0.2µm)	5 (0.4µm)	1 (1µm)	0.2 (2.2µm)				
25 MD	20 (0.2µm)	4 (0.5μm)	1 (1μm)	0.2 (2.2µm)	0.04 (5µm)				
Vinothkumar & Henderson (2016) Quart Rev Biophys 49, e13 22									

Challenging biological samples require specialised handling

- e.g. 1) Screening sample conditions (e.g. pH, additives) using thermal unfolding = "ProteoPlex" Chari et al (2015) Nat Meth 12, 859
- 2) dynamic, multi-protein complexes: glycerol gradient centrifugation coupled to chemical cross-linking = "GraFix" Kastner et al (2008) Nat Meth 5, 53

3) membrane protein stabilisation – can include detergents, amphipols, lipid nanodiscs, SMALPs e.g. Sgro and Costa (2018) Front Mol Biosci 5, 74

4) time-resolved sample conformation (see also later): precise timing of mixing/spraying sample+ligand during to grid prep Berriman and Unwin (1994) Ultramicro 56, 241

Negative stain (1)

What is it?

- sample is adsorbed to continuous carbon support film
- sample is surrounded by heavy metal solution, which is air-dried
- forms a cast around the sample
- "negative" because the stain sits where the protein is NOT

Ideal properties:

- high density
- stability
- solubility
- ability to fix sample
- uniform spreading on support film
- structureless when dry
- chemically inert

Ohi et al (2004) Biol Proced Online 6,23

24

Summary of other approaches

- Detergents (below CMC): protein specific: reported to help with distribution and orientation (e.g. 0.085mM dodecyl maltoside; Lyumkis et al (2013) Science 342, 1484); digitonin, 0.05% (v/v) Tween 20: Fernandez-Leiro et al (2015) eLife 4, e11134
- Ni-NTA lipids Kelly et al (2008) JMB 382, 423
- Use affinity grids or antibodies reviewed in Earl et al (2017) COSB 46, 71
- Functionalised graphene oxide Wang et al (2019) bioRxiv http://dx.doi.org/10.1101/657411doi:
- PEGylation of gold: better sample orientation distribution Meyerson et al (2014) Sci Rep 4, 7084
- make a DNA cage to put protein in middle Martin et al (2016) PNAS113, E7456-E7463
- If you're stuck with preferred orientations, tilt Tan et al (2017) Nat Meth 14, 793

Suggested reading					
Dubochet, Adrian, Chang, Homo, Lepault, McDowall, Shultz (1988) Cryo- electron Microscopy of vitrified specimens. Q. Rev. Biophys. 21: 129-228 Grassucci, Taylor, Frank (2007) Preparation of macromolecular complexes cryo-electron microscopy. Nat Protoc 2: 3239-3246	fo				
Methods in Enzymology Volume 481, Pages 2-410 (2010) Cryo-EM Part A Sample Preparation and Data Collection Edited by Grant J. Jensen ISBN: 978-0-12-374906-2					
Methods in Enzymology Volume 579, Pages 2-445 (2016) The Resolution Revolution: Recent Advances In cryoEM Edited by R.A. Crowther ISBN: 978-0-12-805382-9					

Common negative stains							
Stain	Mw		% in soln; working pH				
Phosphotungstic Acid (PTA)	3315.5	0.8	1-4%; pH 5-8				
Phosphomolybdenic Acid (PMA)	2041.6	0.9nm gi	1-4%; pH 5-8				
Ammonium Molybdate (AM)	1235.9	rain +	1-4%; pH 5-7				
Uranyl Acetate (UA)	424.2	0.4-0.5n	0.5-4%; pH 4.2 [stable for months]				
Uranyl Formate (UF)	414.1	ım grain	0.5-1%; pH 4.5-5.2 [stable for only ~1-2days]				
Methylamine Vanadate (Nano-Van)	ND		2%; pH8.0				
Methylamine Tungstate (Nano-W)	ND		2%; pH 6.8				
NB Don't forget to filter stain solution through 0.22 μm filter 44							