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• Complete single-particle 
processing workflow

• Freely available for 
academia, supported 
by industry

• Under heavy development, regularly updated

• Methods and algorithms
• Computational statistics, optimization theory, machine learning

• Professionally designed and built UI/software platform

• Ultra high-performance 

Algorithm Development, 
Software, Performance

CryoSPARC



Computational considerations for SPA

Sample 
Preparation

Data Collection ComputationComputation
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3mm 
EM Grid

Holey Carbon 
Film

Vitrified Sample in 
Amorphous Ice

Blotting, Freezing

• Thin film of liquid 
sample on grid

• Rapid plunge-freezing 
to vitrify and preserve 
sample

• Results in protein 
particles frozen in 
random orientations in 
thin film of ice

• Ice thickness/quality

• Particle concentration

• Sample heterogeneity

• Orientation distributions

• Denaturation/aggregation

Sample 
Preparation

Data Collection Computation
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Computational considerations for SPA



• Imaging of sample 
in Transmission 
Electron 
Microscope

• Avoiding radiation 
damage:
very low electron 
dose (high noise)

Electron 
Beam

Direct Detector captures 2D 
projections

• Phase contrast

• Microscope aberrations

• Stage drift

• Sample deformation

• Radiation damage

• Very high noise levels

Sample 
Preparation

Data Collection Computation
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Computational considerations for SPA



• Pre-processing
• Locate particles in ice
• Exclude junk/broken 

particles
• 2D-to-3D reconstruction
• Resolving heterogeneity
• High-resolution refinement

Sample 
Preparation

Data Collection Computation
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Computational considerations for SPA



Particle Picking

Particle Curation

2D Classification

Ab-Initio 3D 
Classification

Heterogeneous 
Refinement

Homogeneous 
Refinement

Resolution 
assessment

Local 
Refinement

Postprocessing
and sharpening

Collect Data

Motion 
Correction

CTF Estimation

Micrograph 
Curation

Final Structures

cryoSPARC

Collect more Data

Single-particle workflow

2000 movies

2TB

2000 micrographs

200GB

1M particles

400GB

500K particles

200 2D-classes

200K particles

5 3D classes

100K particles

3Å resolution



• Data collected at NRAMM 
(Titan Krios)

• Publically depositited at 
EMPIAR (10025)

• 0.6575 A pixel size (super 
resolution)

• 8k x 8k, 38 frames

• 53 electrons/A2`

• Large, stable, 
no heterogeneity, 
no flexibility

• Subset of 20 movies

• TIFF format compression

T20S Proteasome

Tutorial Dataset



• Full Frame Motion Correction (Multi) job

• Use output from import job

• Default params

T20S Proteasome

Start Motion Correction



Full frames or patches

Motion trajectory 

Aligned average

Matching score

• Maximize matching 
score over trajectories

• Global motion and 
local motion 

General Principle

Motion correction



• Maximize cross-correlation 
between aligned average and 
frames

• Optimize over trajectories with 
gradient based quasi-Newton 
optimizer (LMBFGS)

• Apply a smoothness penalty to 
trajectory

Variant of alignparts_lmbfgs [Rubinstein & Brubaker 2015]

Motion correction



Motion correction

• Maximize cross-correlation 
between aligned average and 
frames

• Optimize over trajectories with 
gradient based quasi-Newton 
optimizer (LMBFGS)

• Apply a smoothness penalty to 
trajectory

Variant of alignparts



Motion correction

• Maximize cross-correlation 
between aligned average and 
frames

• Optimize over trajectories with 
gradient based quasi-Newton 
optimizer (LMBFGS)

• Apply a smoothness penalty to 
trajectory

Variant of alignparts



• New cross-validation approach for 
data-driven optimal smoothing:

• Optimal Smoothing
• No tuning parameters

• 10 seconds per movie

Smoothing strength
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Motion correction
How much smoothing?



• Global rigid motion and local 
sample deformation together

• No need for particle positions

• Performs interpolation to create 
motion corrected micrographs 

• Dose weighting 

Motion correction
New patch-based Local motion correction



Noble et al eLife 2018

• Fast GPU Implementation

• Automatically estimates 
defocus variation for tilted, 
bent, deformed samples

• Accurate for all particle 
sizes and type including 
flexible and membrane 
proteins

New Patch-based Local CTF Estimation

CTF Estimation



• Fast GPU Implementation

• Automatically estimates 
defocus variation for tilted, 
bent, deformed samples

• Accurate for all particle 
sizes and type including 
flexible and membrane 
proteins

New Patch-based Local CTF Estimation

CTF Estimation



• Based primarily on motion 
trajectories and CTF fit 
quality scores

• Looking for thinnest ice, 
least motion

• Exposure curation tool

Often tedious

Exposure curation



• Correlation-based scoring
• Template bias 

(Einstein-from noise)

• Local power score
• Unbiased measure of signal 

content

• GPU Implementation:
• < 1 second per micrograph 

• Unbiased blob-based 
particle picker
• Circular and elliptical blobs

Template or blob based picking

Template Correlation 
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Particle Picking



Inspect and curate massive datasets

• Remove junk particles and 
improve homogeneity of 
particle stacks

• Scales well with dataset size

• Online-EM algorithm

Fast 2D Classification



125,000 particles with 50 classes in 12 minutes on 1x GPU

Fast 2D Classification



125,000 particles with 50 classes in 12 minutes on 1x GPU

Fast 2D Classification

1,000,000 particles with 50 classes in 2 hours on 1x GPU



125,000 particles with 50 classes in 12 minutes on 1x GPU

Fast 2D Classification

1,000,000 particles with 50 classes in 2 hours on 1x GPU

200,000 particles with 200 classes in 2 hours on 1x GPU

cryoSPARC v2.8.3 + latest hardware:
800,000 particles with 200 classes in 1.2 hours on 1x GPU



What makes the problem difficult

SPA 3D Reconstruction

• Unknown pose of each particle
• 3D Orientation + 2D Shift

• High noise level 
• Irreducible due to beam damage

• Many particles (100,000+)

• Corruption by microscope 
contrast transfer function

• Multiple conformational states or 
distinct particles

• Flexibility and disorder



Probabilistic graphical model 

Probabilistic foundations

✓R

3D Structure 2D Image

Unknown Pose

Microscope 
Settings

N

• Fully “Bayesian” treatment:

• Meaning we want to know 
all the possible 3D 
structures that could 
explain the images

• Arrow from V to X is the 
image formation model



Making inference computationally feasible

Probabilistic foundations

✓R

3D Structure 2D Image

Unknown Pose

Microscope 
Settings

N

• Maximum probability estimate:

• Now only looking for the 
single estimate of V that 
best explains the data

• Different choices of V yield 
all SPA techniques



Various choices of V

Probabilistic foundations

✓R

2D Image

Unknown Pose

Microscope 
Settings

N

• Homogeneous refinement:

• Discrete Heterogeneity:

• Local refinement/multiple rigid 
bodies:

• In all cases, need to solve an 
optimization problem:



Likelihood function

Probabilistic foundations

✓R

2D Image

Unknown 
Pose

Microscope 
Settings

N

• Likelihood of observing an image 
given V depends on noise, CTF, etc

• Marginalization or maximization 
over poses R



• Optimization is a very well studied topic in mathematics

• Almost all other computational problems in EM are 
optimization problems:
• Motion correction

• CTF estimation

• Model building

• Major characteristics of optimization problems are key

Mathematical properties

Optimization problems



Property: Convexity

Optimization problems

x

f(x
)

x
f(x

)
• Single global optimum

• Guaranteed unique solution

• Generally inexpensive to solve

• Multiple local optima

• Need to “explore”

• Generally exponential cost



Property: Conditioning

Optimization problems

• Least coupling of variables

• Simple to solve

• Highly coupled variables

• Difficult to solve 



• Globally Non-convex: 
• multiple local optima

• Poor-conditioning: 
• small change in angle 

changes the structure, and 
change in structure changes 
angles

• Locally convex and well-
conditioned
• Once near enough to a local 

optimum

Homogeneous case 

Optimization problem for SPA



• Also known as iterative refinement, expectation-
maximization
• Hold first variable fixed, optimize the second
• Hold second variable fixed, optimize the first

• Provably guaranteed to converge:
• Globally for a convex problem
• To the nearest local optimum for a non-convex 

problem

• Convergence rate:
• Very fast for well conditioned problems
• Very, very slow for poor condition

Coordinate Ascent

Optimization algorithms



• Hold first variable fixed, optimize the second

• Hold second variable fixed, optimize the first

• Each subproblem becomes simple

Coordinate Ascent

Optimization algorithms



Iterative refinement (Expectation Maximization)

Alignment 
(Structure fixed)

Reconstruction
(Alignments fixed)



• Well suited for optimization of our SPA problem 
once near the optimal solution

• How to solve without “knowing the answer”?

• How does this change in the more complex case of 
heterogeneity?

• Consider a different optimization algorithm: 

• Stochastic gradient descent

Coordinate Ascent

Optimization algorithms



• Can take large steps, in multiple dimensions 
at once

• Gradient is direction of steepest descent:

Gradient Descent

Optimization algorithms



Stochastic gradient descent

Optimization algorithms

Iter 1

Iter 2

Iter 3

Randomly select 
small subsets of 
images at each 
iteration

Many noisy incremental changes



• Stochastic optimization 
• Class of modern 

statistical methods

• Stochastic Gradient 
Descent (SGD)
• Very successful variant
• Powers modern deep 

learning

SGD explores the 
structural space

Space of all 3D 
Structures

Li
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Ab-initio reconstruction: SGD

Punjani, Rubinstein, Fleet & Brubaker   Nature Methods 2017



Data from Wong et al. eLife 2014

Ab-initio reconstruction: 80S Ribosome

Ab-initio reconstruction: 80S Ribosome



Ab-initio reconstruction
Ab-initio reconstruction: SGD



• Additional classes add more variables and 
more non-convexity (local optima)

• Plain SGD alone is no longer effective

• Exploration vs. Exploitation

• In SGD controlled by “step size” and 
“minibatch size”

• In cryoSPARC:
“class similarity score”

Explore vs. Exploit

Heterogeneity



Data from Schep et al. PNAS 2016

Heterogeneous samples: ATPase



Data from Laxmikanthan et al. eLife 2016

Heterogeneous samples: Holiday Junction



Data and figures from Ripstein et. al eLife 2017 

170K particles
5 classes ab-initio

30K particles
4.6A refinement

Heterogeneous samples: AAA+ Unfoldase



• Cannot fix missing views

• Too few classes: average of structures

• Too many classes: 3D classes start to just 
become 2D and have only a single view

• Reproducibility: can run multiple times each 
time will use a different random seed 

• Symmetry can cause issues if enforced

Important considerations

Ab-initio Heterogeneity



• One or more starting models 
(from ab-initio reconstruction)

Multi-reference Refinement (3D classification)



• Iterative refinement can 
proceed from coarse structure

• Usually very computationally 
expensive 

• Many refinements in a complex 
workflow

High resolution refinement



• 5D pose search is expensive, for every image

• Existing techniques search exhaustively or locally

• Branch-and-bound reduces computational 
expense

2D-to-3D image alignment



Optimal pose

True alignment error

Branch and bound method

Punjani, Rubinstein, Fleet & Brubaker   Nature Methods 2017



Bound on error

L = 15 (24Å)

Branch and bound method

Punjani, Rubinstein, Fleet & Brubaker   Nature Methods 2017



Remaining candidates at L = 10 (37Å)

L = 15 (24Å)

Branch and bound method

Punjani, Rubinstein, Fleet & Brubaker   Nature Methods 2017



Remaining candidates at L = 15 (24Å)

L = 20 (14Å)

Branch and bound method

Punjani, Rubinstein, Fleet & Brubaker   Nature Methods 2017



Remaining candidates at L = 20 (14Å)

Branch and bound method

Punjani, Rubinstein, Fleet & Brubaker   Nature Methods 2017



Optimal pose

Optimal pose is within remaining candidates

Branch and bound method

Punjani, Rubinstein, Fleet & Brubaker   Nature Methods 2017



• Iterative refinement is very 
expensive – multiple rounds of 
alignment and reconstruction 
required 

• Branch and bound (BnB) algorithm 
drastically reduces computation 
required without any loss in quality

• High-resolution structures in 
minutes

• Refinements are repeated dozens 
of times in a real cryoEM workflow

80S ribosome dataset:
105,000 particles refined to 3.2Å

Punjani et al. Nature Methods 2017

11 min on 1x NVIDIA V100

56

High-speed high-resolution refinement



• Dataset split in half

• Maps reconstructed 
from each half

• Compare 
corresponding shells 
of Fourier components

• Check where Fourier 
Shell Correlation 
drops below a 
threshold

• Mask is critical!

Measuring Resolution



Iterative refinement (Expectation Maximization)

Alignment 
(Structure fixed)

Reconstruction
(Alignments fixed)

Overfitting!



Preventing overfitting: Gold-Standard FSC
[Scheres and Chen, 2012]

Half “A” Half “B”

Independent 
Refinements

Independent 
Refinements

Half Map A Half Map B

FSC

FSC

FSC

FSC



• Need coverage of viewing 
directions

• Not necessarily every 
direction, but enough to 
cover 3D Fourier space

• Very common resolution 
limitation

Orientation distribution



• Fast GPU implementations

Local resolution and filtering



• Grounded in Fourier basis
• Fourier slice theorem

• CTF correction

• 2D-3D Backprojection

• Fourier Shell Correlation

Conventional refinement:

Non-uniform refinement



• Regularization in Fourier basis 
inappropriate
• Disordered regions

• Detergent, lipid nanodisc, etc

• Solvent-protein boundary

• Fractional occupancy

• Flexible or highly dynamic regions

• Non-uniform refinement: 

Use a basis that is 
localized in space 
and frequency

Key intuition:

Non-uniform refinement
TRPA1

EMPIAR 10024



Non-uniform refinement



Non-uniform refinement

STRA6 receptor - 180 kDa membrane protein

Conventional Refinement

Oliver Clarke & Filippo Mancia, Columbia University



Non-uniform refinement

Conventional Refinement Non-uniform Refinement

Oliver Clarke & Filippo Mancia, Columbia University

STRA6 receptor - 180 kDa membrane protein



Local and focused refinement

Masking, signal subtraction and non-uniform refinement



Published result cryoSPARC result

Local and focused refinement

Masking, signal subtraction and non-uniform refinement



“3D classification” is clustering

• Significant biological insight in 
conformational landscapes

• Existing algorithms can deal with 
discrete heterogeneity

• How many classes?

• Continuous heterogeneity?

• New algorithm! 

Conformational Heterogeneity

Space of all particles



3D Variability Analysis (New!)Directly determining 3D motion/conformational change

3D Volumes

3D CovarianceConsensus Volume

Images

CTF Projection Image noise

• 3D Covariance matrix

• New algorithm to solve for top K 
eigenvectors

• Eigenvectors correspond to 
molecular motions

• Accounting for CTF, viewing 
directions, all particles 
simultaneously, high resolution

80S Ribosome
EMPIAR10028

tri-snRNP
EMPIAR10073

Nav1.7
EMPIAR10261

3D Variability Analysis (New! cryoSPARC v2.9)

✓R

2D Image

Unknown 
Pose

Microscope 
Settings



3D Variability Analysis (New!)

Directly determining 3D conformations

• Can measure “reaction 
coordinates” of individual 
particles

• Low-dimensional space directly 
shows clusters for discrete states

• Can run hierarchically

3D Variability Analysis – discrete heterogeneity
130K 50S Ribosome Particles 

(EMPIAR 10076)
3 variability dimensions



Non-trivial workflows

• Many tools needed for 
dealing with complex 
molecules

• Multiple iterations through 
processing pipeline 
required for near-atomic 
resolutions and 
identification of ligand 
binding sites

• Typical dataset sizes now 
multiple millions +



Robust software features and intuitive user experience

ü Directly input and decompress raw data

ü Project and workspace organization

ü Tree view

ü Drag and drop job builder

ü Auto-tuning of hundreds of parameters

ü Automated one-click workflows

ü Interactive jobs

ü Real-time experiment details and plots

ü Direct downloads

ü Computational resource manager

ü Smart queuing/cluster integration

ü User management

ü Interoperability with other EM packages



cryoSPARC v2 software system



• Master and worker 
nodes

Modularized

Master

Database

Command

Webapp

Worker

GPUs

SSD

ComputeGUI

CLI

Shared File System

Multi-node and cluster support



• Multiple independent lanes

• Each lane has workers on which 
jobs can be launched

• Within a lane, first in first out

• Jobs wait for their 
dependencies to complete 
before running

• Easy to chain and queue jobs 
and let run autonomously 

Smarter queueing

J1 J6 J7

J9J8J2

J3

Lane 1 Lane 2

Worker 
1

Worker 
2

Worker 
3

Scheduler



David Fleet, PhD

University of Toronto

John Rubinstein, PhD

SickKids Hospital
University of Toronto

Ali Punjani Suhail Dawood Saara Punjani Stephan Arulthasan Ali Haydaroglu

CryoSPARC Team

Jay Yoo

Marcus Brubaker, PhD

York University



Thanks!



Projects, Workspaces, Jobs

• Projects are hard partitions

• Jobs connect via results

• Complex workflows 

Tree structure with subtrees

J1 J4

J5 J6 J7

J9 J10

J12

J16

J13 J15

J11 J14J8

J17

J2

J3



Job builder

• Connect inputs

• Set parameters

• Queue job

Drag and drop to create new jobs



Results and Groups

• Results: low-level output from a job

• Group: set of results that are 
semantically related

• Particles, Volumes, Micrographs, etc

• Connect jobs using groups

High level and low level containers

J1
Particle picking

Particle data
Particle locations

Particle CTF

Particle Alignments

J4
2D classification

2D class average data

2D class average stats

2D class average population

Particle data
Particle locations

Particle CTF



Projects, Workspaces, Jobs

• Workspaces cut up 
workflows into manageable 
chunks within a project

Tree structure with subtrees

J1 J4

J5 J6 J7

J9 J10

J12

J16

J13 J15

J11 J14J8

J17

J2

J3


