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Agenda
• An intuitive introduction

• Alignment
– Dealing with the incomplete problem
– maxCC vs ML (real-space)

• Classification
– Multi-reference alignment in 2D
– and in 3D

• Fourier-space formulation
– Regularised likelihood optimisation (Bayesian approach)



An intuitive introduction



An example “protein”
Jan



Experimental setup
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Electron microscopy imaging

3D object

2D projection

e-

We collect data in 2D, 
but we want 3D info!



Further inconveniences

• Microscope imperfections introduce artefacts
– Contrast Transfer Function (CTF)

• Large amounts of noise



Single particle analysis

• Embedded in ice: many unknown orientations

• Combine all 2D projections into a 3D reconstruction



Projection matching

Initial 3D model



Projection matching

maxCC

compare with all
projections



3D reconstruction



Iterative refinement



Iterative refinement



Alignment

Or how to ‘match’ projections



Incomplete data problems

• Part of the data was not observed experimentally
– Orientations
– Class assignments

• Difficult to solve!
– Iterative methods?

• Complete data problem would be very easy to solve

• (Another famous one: the phase problem in XRD)



Incomplete data problems

Missing data (Y): orientations

Observed data (X): images

Not easy



Complete data problems

white Gaussian noise

Observed data (X): images

Easy!
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Incomplete data problems

Missing data (Y): orientations

Observed data (X): images

Not easy



Incomplete data problems

• Option 1: add Y to the model
Maximum 

cross-correlation 
/ least-squares

Maximum 
Likelihood

Probability of X, 
regardless Y

• Option 2: marginalize over Y
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The maxCC approach



Reference-based alignment

• Starts from some initial guess about the structure

Cross-
correlation

Compare initial guess with each 
experimental particle
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Align and average

CC avgalign

Iterate!



Align and average

CC avgalign

Iterate!



The ML approach



Xi

Maximum likelihood

Statistical model

Based on Gaussian error model
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Xi

Maximum likelihood

Statistical model

Do not assign discrete 
orientations if the noise 

in the data does not 
allow this...

Sigworth, J. Struct. Biol., 1998
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Incomplete data problems

• Option 1: add Y to the model Maximum 
cross-correlation

Maximum 
Likelihood

Probability of X, 
regardless Y

• Option 2: marginalize over Y
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Incomplete data problems
Maximum 

cross-correlation

Maximum 
Likelihood

In the limit of noiseless data the 
Two techniques are equivalent!

Read more? See Methods in Enzymology, 482 (2010)

Many software packages now use ML: 
cryoSPARC, SPARX/SPHIRE, FREALIGN, 

XMIPP, RELION

Many software packages now use ML: 
cryoSPARC, SPARX/SPHIRE, FREALIGN, 

XMIPP, RELION



Classification



The 2D multi-reference algorithm

estimates for K 
2D objects

for each image, calculate all

k=1 k=2

sampled rotations 360°

calculate new 2D average
as probability weighted
averages
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Reference-free 2D class averaging

Start from random angles: 
no user input other than 

number of classes!!
Extremely powerful 

to clean & assess 
your data Scheres et al (2005) J.Mol.Biol.



3D alignment & classification



3D ML refinement

“Probability-weighted angular assignment”

Do not make
hard decisions 

if the noise 
impedes this



Initial model

• Expectation-Maximisation is a local optimizer!
– Gets stuck in nearest (local) minimum

• Bad model in -> bad model out!!!
– Much less of a problem with high-resolution data

• Stochastic methods may reach global minimum
– Stochastic Hill Climbing (SIMPLE)
– Stochastic Gradient Descent (cryoSPARC & RELION)



Structural heterogeneity

complex!



Multi-reference refinement



Multi-reference refinement



ML3D classification

“Probability-weighted angular assignment”



Prelim. ribosome reconstruction
91,114 particles; 9.9 Å resolution

fragmented

blurred

(depicted at a 
lower threshold)



Seed generation

80 Å
filter

4 random subsets; 1 iter ML



ML-derived classes

no ratcheting; no EF-G; 3 tRNAs
differences: overall rotations

ratcheting, 
EF-G, 1 tRNA

(Results coincided with a supervised classification) Scheres et al (2007) Nat. Meth.



Fourier-space formulation



Projection-slice theorem



Projection-slice theorem



Projection slice theorem



Data model

• Real-space

• Convolute w/ CTF
• P implements integrals

• Ni describes white noise

• Fourier space

• Multiply w/ CTF
• P takes a slice

• Ni describes coloured noise

Xi  CTFi PVk Ni Xi  CTFiPVk Ni



Regularised Likelihood



Maximum-likelihood estimators

• The best one can do… 
• …in the limit of infinitely large data sets

• But my data set is limited in size, right?!
– Even with Krios, K3 & EPU!



The bad news
• The experimental data alone is not enough to 

determine a unique solution!

• There are many noisy reconstructions that 
describe the data equally well…

• Danger of incorrect interpretation…



The good news

• By incorporating external information, a different 
problem may be solved for which a unique 
solution does exist!

• Regularisation

• Conventional regularisation approaches
– Wiener filtering
– Low-pass filtering



A Bayesian view on regularization

Posterior =
Likelihood * Prior

Evidence

Regularised likelihood optimisation
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Likelihood

• Assume noise is Gaussian and independent 
– in Fourier space
– with spectral power 2(): coloured noise
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Prior

• Assume signal is Gaussian and independent 
• in Fourier space
• Limited power 2(): smoothness in real space!
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Expectation maximization

Estimate resolution-dependent
power of signal from the data

Wiener (optimal) filter for 
CTF-corrected 3D reconstruction / 
2D class averages

Estimate resolution-dependent
power of noise from the data
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3D Wiener filter

• Calculates SSNR() (as a 3D function)
• Handles uneven orientational distribution
• Handles astigmatic CTFs & CTF envelopes 
• Corrects CTF & low-pass filters
• Optimal linear filter

WITHOUT 
ARBITRARINESS!
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Recapitulating

• Alignment & classification are incomplete problems
– Best dealt with by marginalisation (ML)

• 2D and 3D problems are very similar

• Fourier-space is most convenient
– CTF multiplication
– Slices instead of line integral projections
– Coloured noise-model
– Regularised Likelihood function -> ‘optimal’ filters



Further Reading
• Penczek, Fundamentals of Three-Dimensional Reconstruction from Projections, Methods in 

Enzymology, , 482 (2010) p 1

• Penczek, Image restoration in cryo-electron microscopy, Methods in Enzymology, , 482 (2010) 
p 35

• Sigworth, Doerschuk, Carazo & Scheres, An Introduction to Maximum-Likelihood Methods in 
Cryo-EM, Methods in Enzymology, 482 (2010) p 263

• Scheres, Classification of Structural Heterogeneity by Maximum-Likelihood Methods, Methods 
in Enzymology, 482 (2010) p 295

• Scheres, Processing of Structurally Heterogeneous Cryo-EM Data in RELION, Methods in 
Enzymology, 579 (2016) p 125

• www2.mrc-lmb.cam.ac.uk/relion  (tutorial & Wiki pages)



Some thoughts on cryo-EM 
software



Open software in a sharing community

SpiderSpider XmippXmipp RelionRelion

BsofBsof

ThunderThunder

FrealignFrealign

Open-source software

ImagicImagic

Free flow of ideas => 
efficient scientific progress

Free flow of ideas => 
efficient scientific progress

cryoSPARCcryoSPARCClosed-source software



Recent trend of commercialisation

• Pharmaceutical interest -> commercial interest

• Protective measures
– Restrictive licenses
– Closed-source
– Patents



Patents in cryo-EM software (I)

• We’re used to patents for hardware

• Not so for mathematical concepts

• Software development is much cheaper!

• Academics typically do software development 
themselves, but not hardware



Patents in cryo-EM software (II)
• Apply widely, rely on patent offices to restrict

– Which patent officer will be expert on cryo-EM 
algorithms?

– In US many things possible, EU is more restrictive
– US-only patents still hard as companies are 

international

• Separation between academics/industry is 
extremely difficult
– Collaborations, spin-offs, liability, etc.



A warning from the past

• Commercial distribution rights to Xplor were 
owned by a small company
– Good intentions; highly academic

• 15-20 years later, in hands of other company, 
these rights caused trouble
– Xplor -> CNS -> CNX   (now ~dead)
– Academics had to restart from scratch: Phenix



Open software in a sharing community

Free flow of ideas => 
efficient scientific progress

Free flow of ideas => 
efficient scientific progress

(EMStats: EMDB-Statistics)

@SjorsScheres@SjorsScheres
#OpenSoftwareAcceleratesScience


