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Agenda

An intuitive introduction

Alignment
— Dealing with the incomplete problem
— maxCC vs ML (real-space)

Classification

— Multi-reference alignment in 2D
—and in 3D

Fourier-space formulation
— Regularised likelihood optimisation (Bayesian approach)



An intuitive introduction
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Experimental setup




Electron microscopy imaging

3D object

We collect data in 2D,
but we want 3D info!

2D projection




Further inconveniences

* Microscope imperfections introduce artefacts
— Contrast Transfer Function (CTF)

* Large amounts of noise




Single particle analysis

Embedded in ice: many unknown orientations

Combine all 2D projections into a 3D reconstruction



Projection matching




Projection matching




3D reconstruction




Iterative refinement




Iterative refinement




Alignment

Or how to ‘match’ projections



Incomplete data problems

Part of the data was not observed experimentally
— Orientations
— Class assignments

Difficult to solve!
— lterative methods?

Complete data problem would be very easy to solve

(Another famous one: the phase problem in XRD)



Incomplete data problems
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Observed data (X): images

Missing data (Y): orientations



Complete data problems

white Gaussian noise

Le) =p(x |©)




Incomplete data problems
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Observed data (X): images

Missing data (Y): orientations



Incomplete data problems

* Option 1: add Y to the model —

Lly,8) =P(Xx |Y,0)

* Option 2: marginalize over Y —>-

L(©®) =P(X |©) = fP(X 'Y,0)PY |©)dg
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Probability of X,
regardless Y




The maxCC approach



Reference-based alignment

* Starts from some initial guess about the structure
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ign and average

Al

Iterate!




Align and average

Iterate!




The ML approach



Maximum likelihood

A(n) X - Statistical model

. P(X, |%,0)
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Based on Gaussian error model
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Do not assign discrete

orientations if the noise

in the data does not
allow this...

(X, |p€E

_

Sigworth, J. Struct. Biol., 1998



Incomplete data problems
* Option 1: add Y to the model

Lly,8) =P(Xx |Y,0)

* Option 2: marginalize over Y

L(©®) =P(X |©) = fP(X 'Y,0)PY |©)dg

l

Probability of X,
regardless Y



Incomplete data problems

In the limit of noiseless data the |
Two techniques are equivalent!

Many software packages now USERVAR
cryoSPARC, SPARX/SPHIRE, FREALICRS
XMIPP, RELION

Read more? See Methods in Enzymology, 482 (2010)



Classification



The 2D multi-reference algorithm

estimates for K
2D objects

sampled rotations 360°

for each image, calculate all

P(imagel. | k, rot)

calculate new 2D average
as probability weighted
averages




Reference-free 2D class averaging
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3D alignment & classification



3D ML refinement

“Probability-weighted angular assignment”



Initial model \

* Expectation-Maximisation is a local optimizer!
— Gets stuck in nearest (local) minimum

* Bad model in -> bad model out!!!
— Much less of a problem with high-resolution data

* Stochastic methods may reach global minimum
— Stochastic Hill Climbing (SIMPLE)
— Stochastic Gradient Descent (cryoSPARC & RELION)



Structural heterogeneity




Multi-reference refinement




Multi-reference refinement




ML3D classification

“Probability-weighted angular assignment”



Prelim. ribosome reconstruction
91,114 particles; 9.9 A resolution
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Seed generation

4 random subsets; 1 iter ML

e




ML-derived classes

ML-1 ML-2 ML-3 ML-4
SR Ap K50 e -
¢ a4 odd L+ <
22,176 particles 27.416 particles 25,651 particles 15,871 particles
N— S |\ J
T~ Y
no ratcheting; no EF-G; 3 tRNAs ratcheting,
differences: overall rotations EF-G, 1 tRNA

(Results coincided with a supervised classification) Scheres et al (2007) Nat. Meth.



Fourier-space formulation



Projection-slice theorem

2D projected

images

2D Fourier




Projection-slice theorem

3D

real space

inverse .
. Fourier
Fourier
transform
transform

Fourier space




Projection slice theorem

real space

Fourier space

3D

inverse
Fourier
transform

Fourier
transform
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Data model

* Real-space * Fourier space
X, =CTE®PV, +N, X =CTF, P¢\/,<+ N.
* Convolute w/ CTF * Multiply w/ CTF

* P,implements integrals < P takes aslice

* N.describes white noise e« N.describes coloured noise



Regularised Likelihood



Maximum-likelihood estimators

* The best one can do...
* ...In the limit of infinitely large data sets

* But my data set is limited in size, right?!
— Even with Krios, K3 & EPU!



The bad news

* The experimental data alone is not enough to
determine a unique solution!

* There are many noisy reconstructions that
describe the data equally well...

* Danger of incorrect interpretation...



The good news

* By incorporating external information, a different
problem may be solved for which a unique
solution does exist!

* Regularisation

* Conventional regularisation approaches
— Wiener filtering
— Low-pass filtering



A Bayesian view on regularization

p(o| x) SPX|O)P©)
P(X)

Likelihood * Prior

Posterior =
Evidence

Regularised likelihood optimisation



Likelihood

* Assume noise is Gaussian and independent
— In Fourier space
— with spectral power o?(v): coloured noise

P(X, |k, ©) H 2% CTEJ'(P@V")JHZE
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Prior

* Assume signal is Gaussian and independent
* in Fourier space
* Limited power 12(V0): smoothness in real space!
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Expectation maximization

> Wiener (optimal) filter for

CTF-corrected 3D reconstruction /
2D class averages

> Estimate resolution-dependent
power of noise from the data

> Estimate resolution-dependent
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3D Wiener filter
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* Calculates SSNR(v) (as a 3D function)

* Hand
* Hand

es uneven orientational distribution
es astigmatic CTFs &

* Corrects CTF & low-p WITHOUT

* Optimal linear filter

ARBITRARINESS!



Recapitulating

* Alignment & classification are incomplete problems
— Best dealt with by marginalisation (ML)

* 2D and 3D problems are very similar

* Fourier-space is most convenient
— CTF multiplication
— Slices instead of line integral projections
— Coloured noise-model
— Regularised Likelihood function -> ‘optimal’ filters



Further Reading

Penczek, Fundamentals of Three-Dimensional Reconstruction from Projections, Methods in
Enzymology, , 482 (2010) p 1

Penczek, Image restoration in cryo-electron microscopy, Methods in Enzymology, , 482 (2010)
p 35

Sigworth, Doerschuk, Carazo & Scheres, An Introduction to Maximum-Likelihood Methods in
Cryo-EM, Methods in Enzymology, 482 (2010) p 263

Scheres, Classification of Structural Heterogeneity by Maximum-Likelihood Methods, Methods
in Enzymology, 482 (2010) p 295

Scheres, Processing of Structurally Heterogeneous Cryo-EM Data in RELION, Methods in
Enzymology, 579 (2016) p 125

www2.mrc-Imb.cam.ac.uk/relion (tutorial & Wiki pages)



Some thoughts on cryo-EM
software



Open software in a sharing community
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Recent trend of commercialisation

* Pharmaceutical interest -> commercial interest

* Protective measures
— Restrictive licenses
— Closed-source
— Patents



Patents in cryo-EM software (1)

We're used to patents for hardware
Not so for mathematical concepts
Software development is much cheaper!

Academics typically do software development
themselves, but not hardware



Patents in cryo-EM software (ll)

* Apply widely, rely on patent offices to restrict

— Which patent officer will be expert on cryo-EM
algorithms?

— In US many things possible, EU is more restrictive

— US-only patents still hard as companies are
international

* Separation between academics/industry is
extremely difficult
— Collaborations, spin-offs, liability, etc.



A warning from the past

* Commercial distribution rights to Xplor were
owned by a small company
— Good intentions; highly academic

* 15-20 years later, in hands of other company,
these rights caused trouble
— Xplor -> CNS -> CNX (now ~dead)
— Academics had to restart from scratch: Phenix



Open software in a sharing community
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