Bayesian methods; particle classification

Sjors H.W. Scheres

EMBO course 2019 Birkbeck College, London

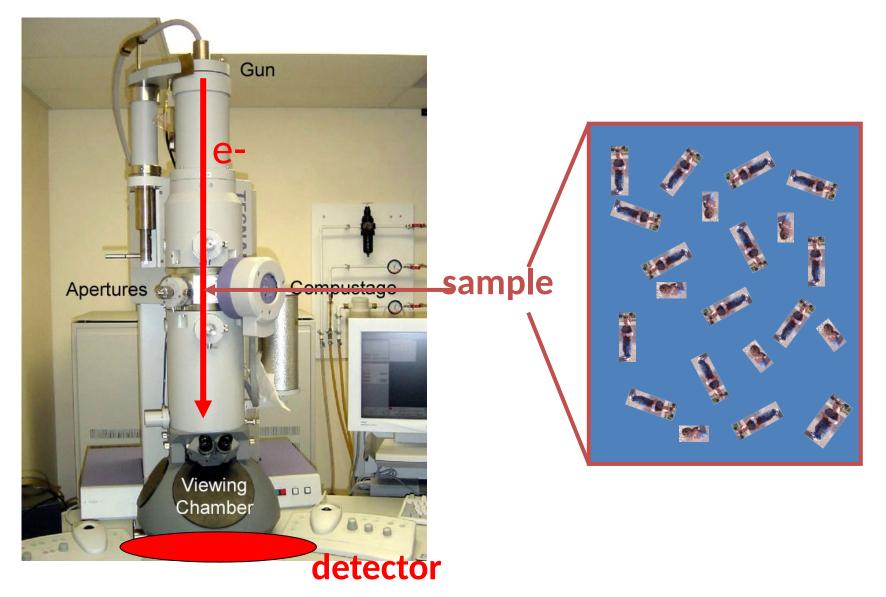
Agenda

- An intuitive introduction
- Alignment
 - Dealing with the incomplete problem
 - maxCC vs ML (real-space)
- Classification
 - Multi-reference alignment in 2D
 - and in 3D
- Fourier-space formulation
 - Regularised likelihood optimisation (Bayesian approach)

An intuitive introduction

An example "protein"

Experimental setup



Electron microscopy imaging

3D object

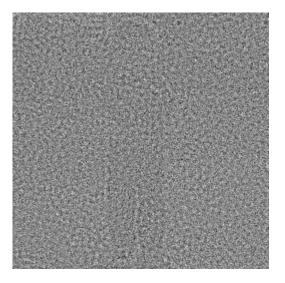
We collect data in 2D, but we want 3D info!

2D projection

Further inconveniences

- Microscope imperfections introduce artefacts

 Contrast Transfer Function (CTF)
- Large amounts of noise

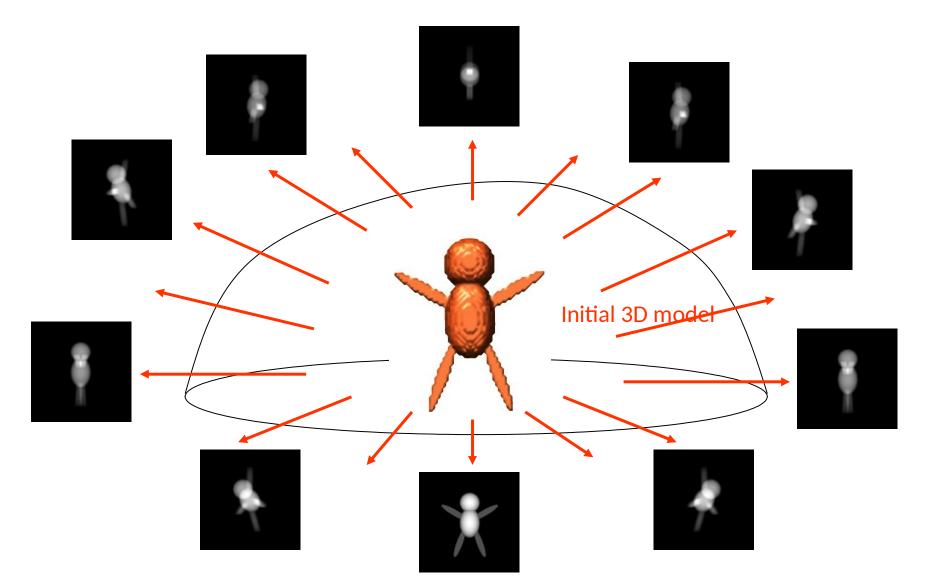


Single particle analysis

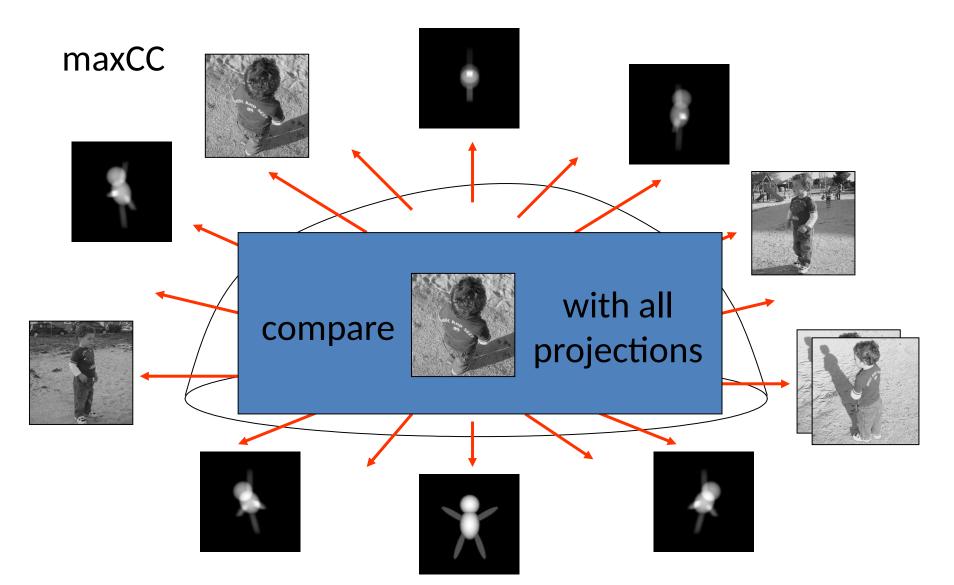
• Embedded in ice: many unknown orientations

• Combine all 2D projections into a 3D reconstruction

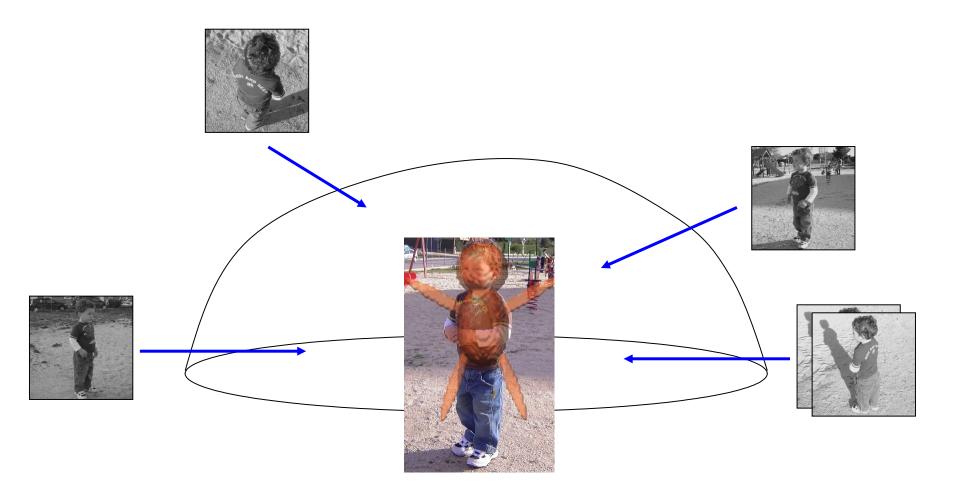
Projection matching



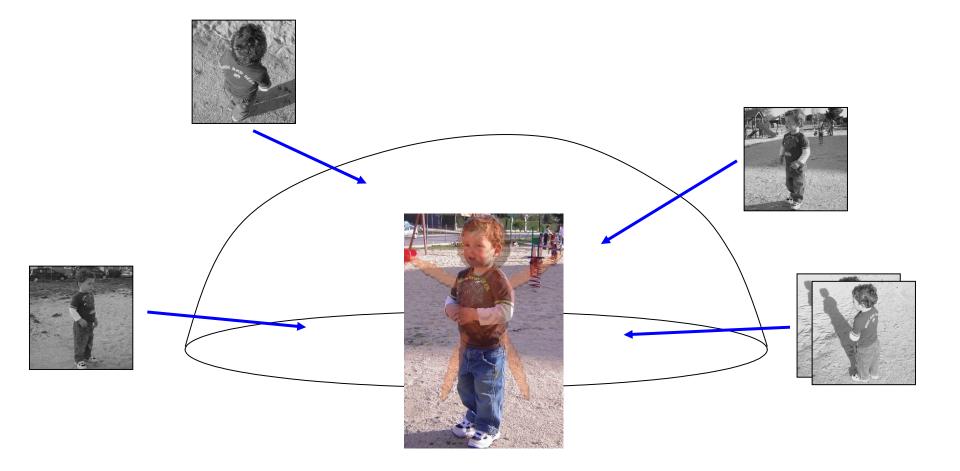
Projection matching



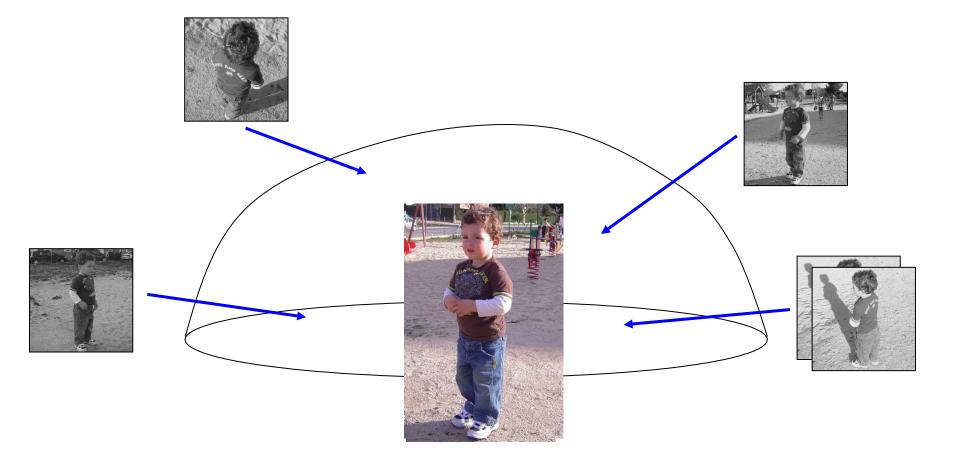
3D reconstruction



Iterative refinement



Iterative refinement



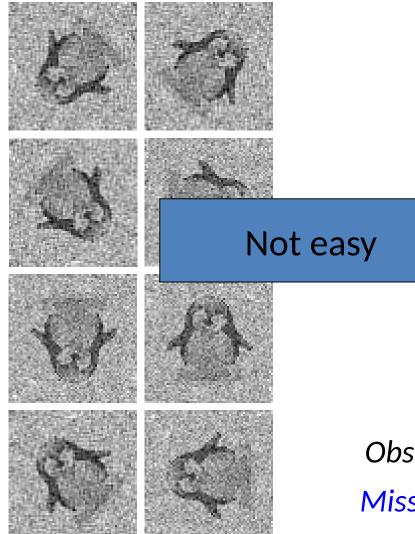
Alignment

Or how to 'match' projections

Incomplete data problems

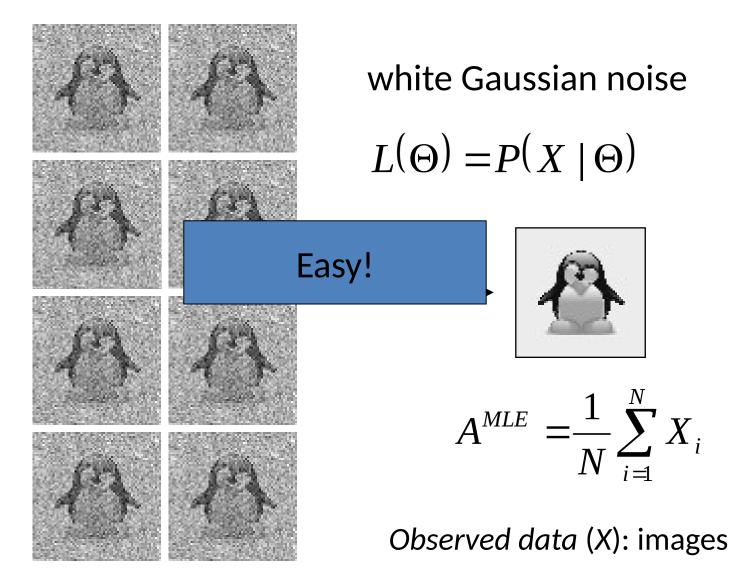
- Part of the data was not observed experimentally
 - Orientations
 - Class assignments
- Difficult to solve!
 - Iterative methods?
- Complete data problem would be very easy to solve
- (Another famous one: the phase problem in XRD)

Incomplete data problems

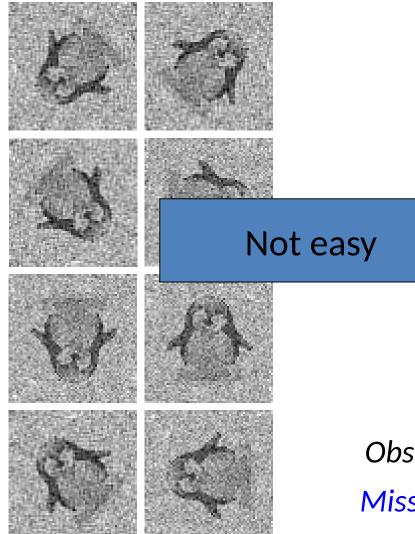


Observed data (X): images Missing data (Y): orientations

Complete data problems



Incomplete data problems



Observed data (X): images Missing data (Y): orientations

Incomplete data problems

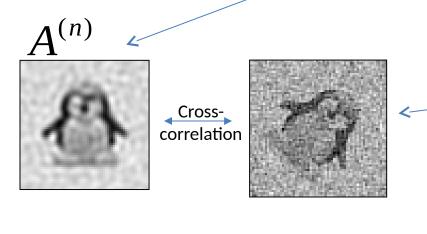
• Option 1: add Y to the model

$$L(Y,\Theta) = P(X | Y,\Theta)$$

The maxCC approach

Reference-based alignment

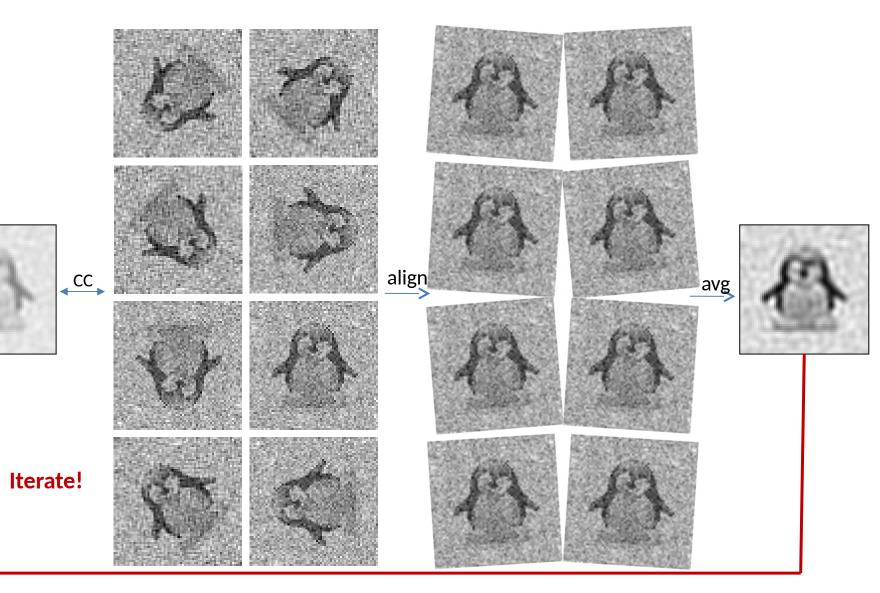
• Starts from some initial guess about the structure



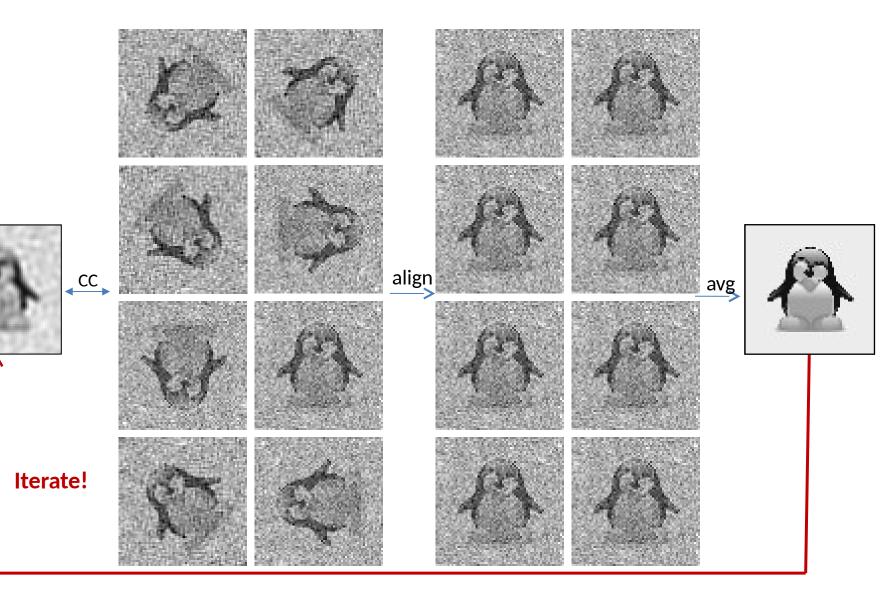
Compare initial guess with each experimental particle

Illustrate CCF on the board

Align and average

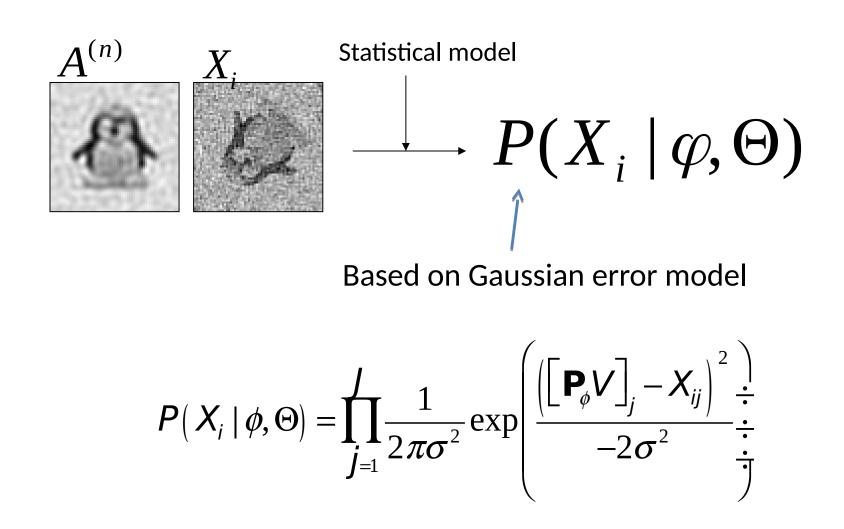


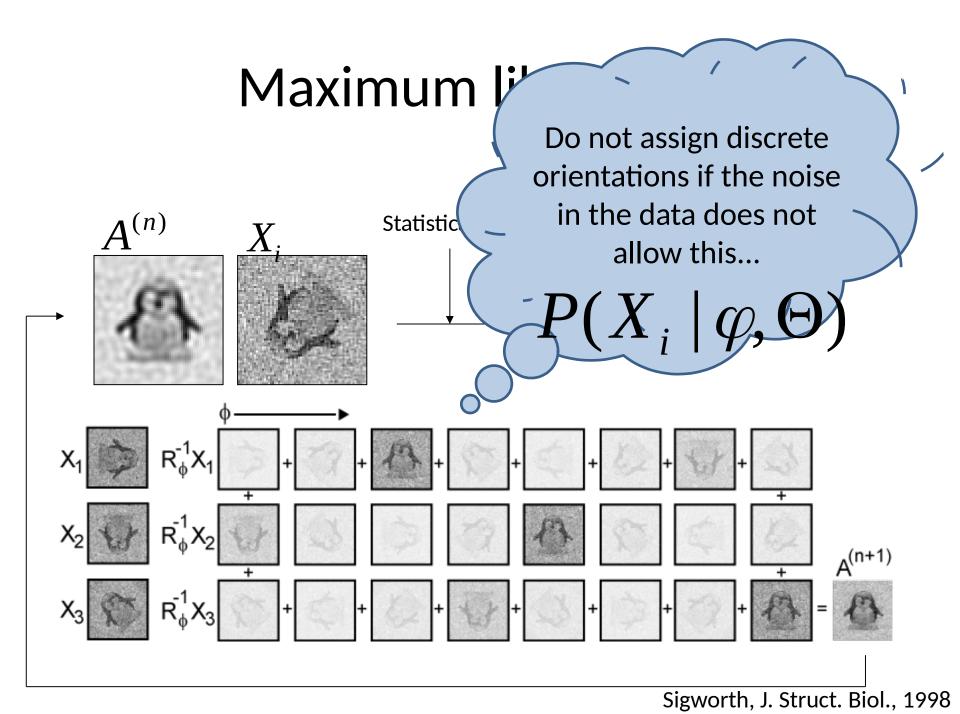
Align and average



The ML approach

Maximum likelihood



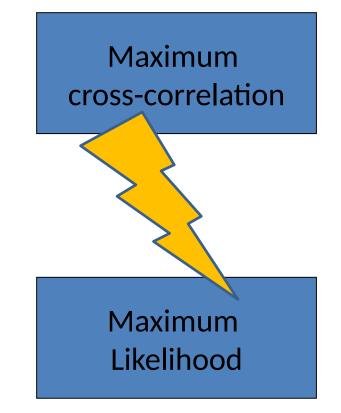


Incomplete data problems

• Option 1: add Y to the model

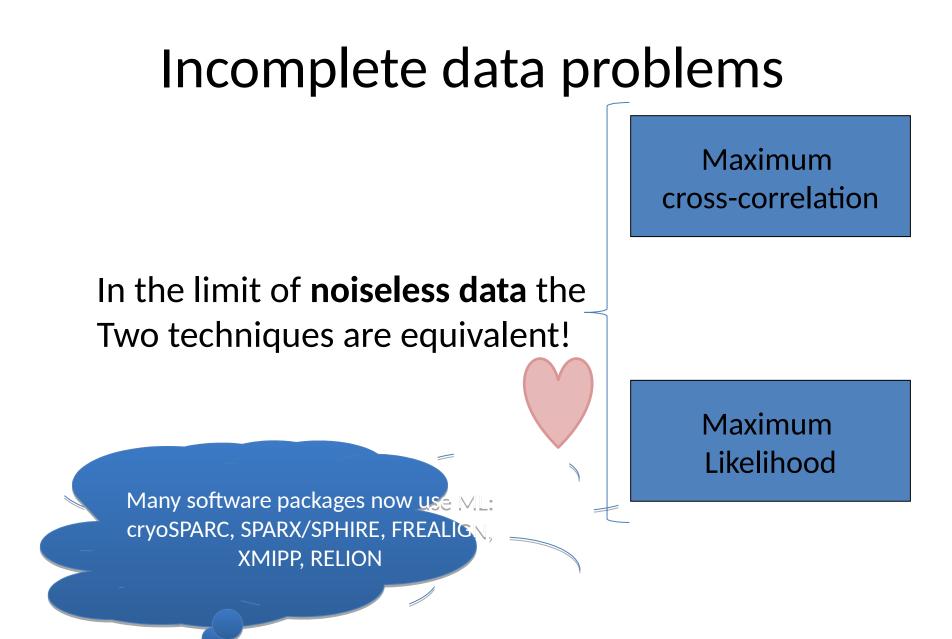
$$L(Y,\Theta) = P(X | Y,\Theta)$$

• Option 2: marginalize over Y



$$L(\Theta) = P(X | \Theta) = \int_{Y} P(X | Y, \Theta) P(Y | \Theta) d\varphi$$

$$\downarrow$$
Probability of X,
regardless Y



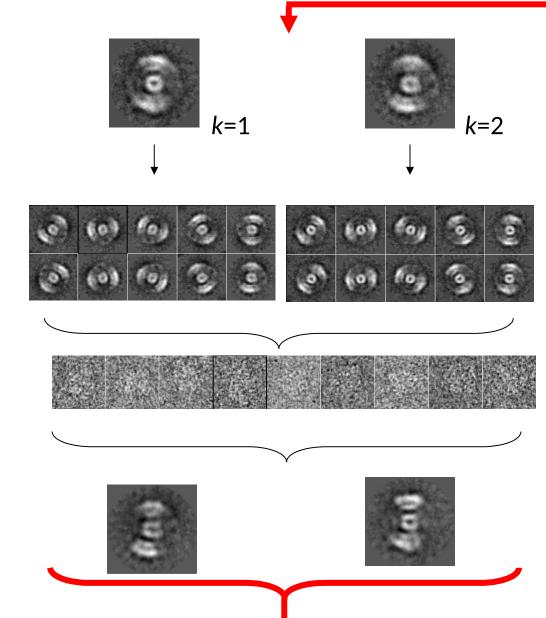
Read more? See Methods in Enzymology, 482 (2010)

Classification

The 2D multi-reference algorithm

estimates for *K* 2D objects

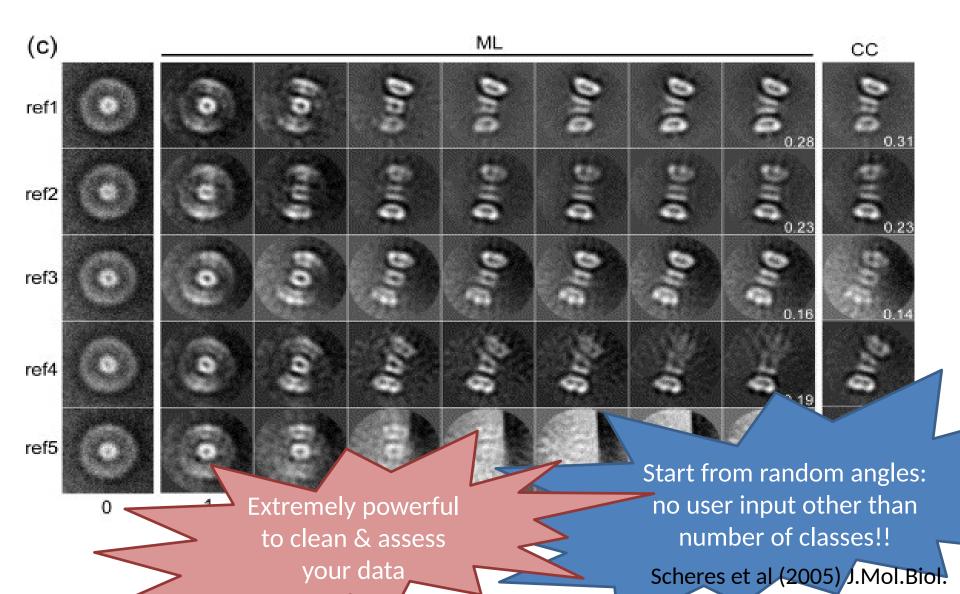
sampled rotations 360°



for each image, calculate all $P(\text{image}_i | k, \text{rot})$

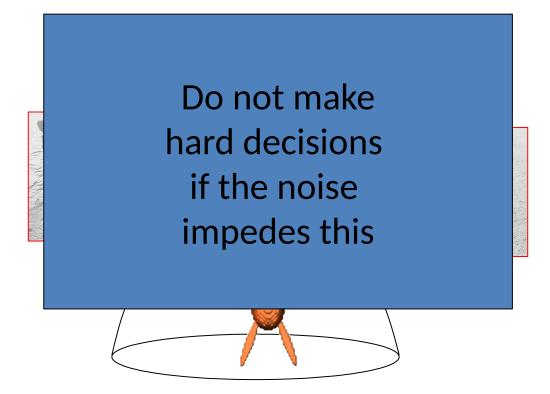
calculate new 2D average as probability weighted averages

Reference-free 2D class averaging



3D alignment & classification

3D ML refinement



"Probability-weighted angular assignment"

Initial model

Expectation-Maximisation is a local optimizer!
 – Gets stuck in nearest (local) minimum

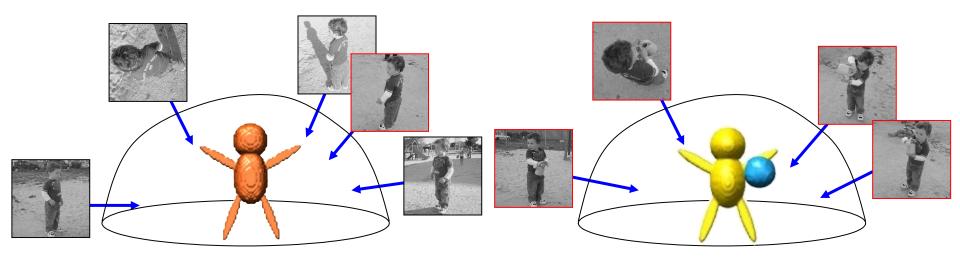
Bad model in -> bad model out!!!
 Much less of a problem with high-resolution data

- Stochastic methods may reach global minimum

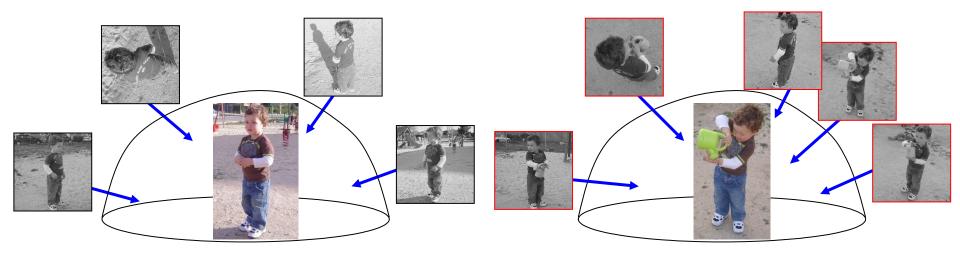
 Stochastic Hill Climbing (SIMPLE)
 - Stochastic Gradient Descent (cryoSPARC & RELION)

Structural heterogeneity

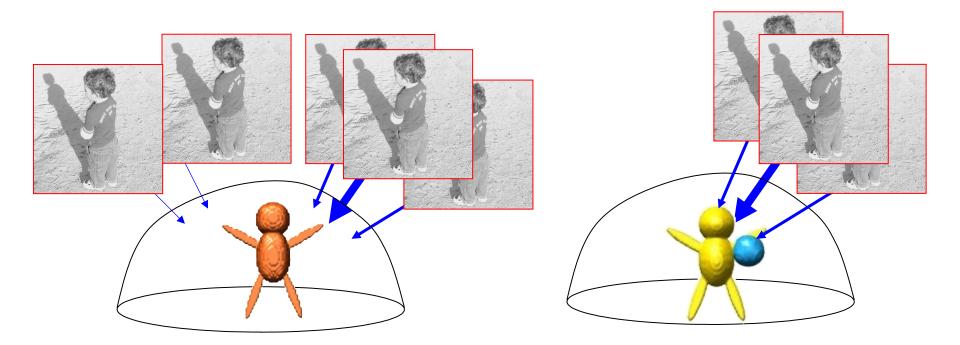
Multi-reference refinement



Multi-reference refinement

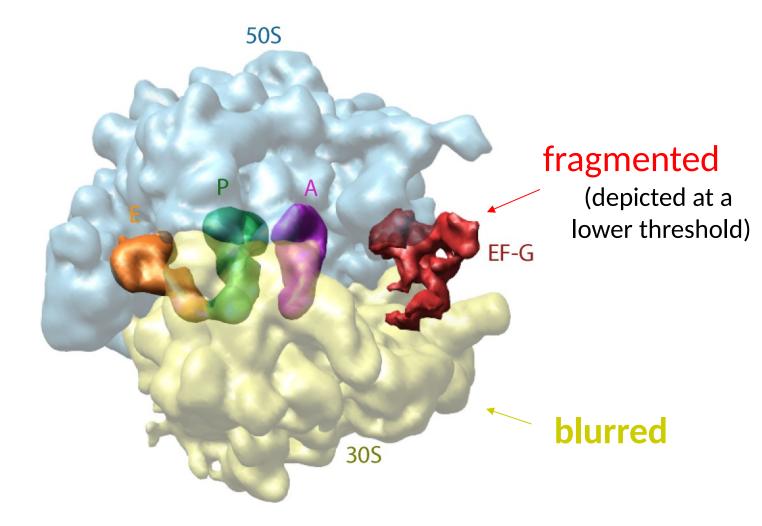


ML3D classification

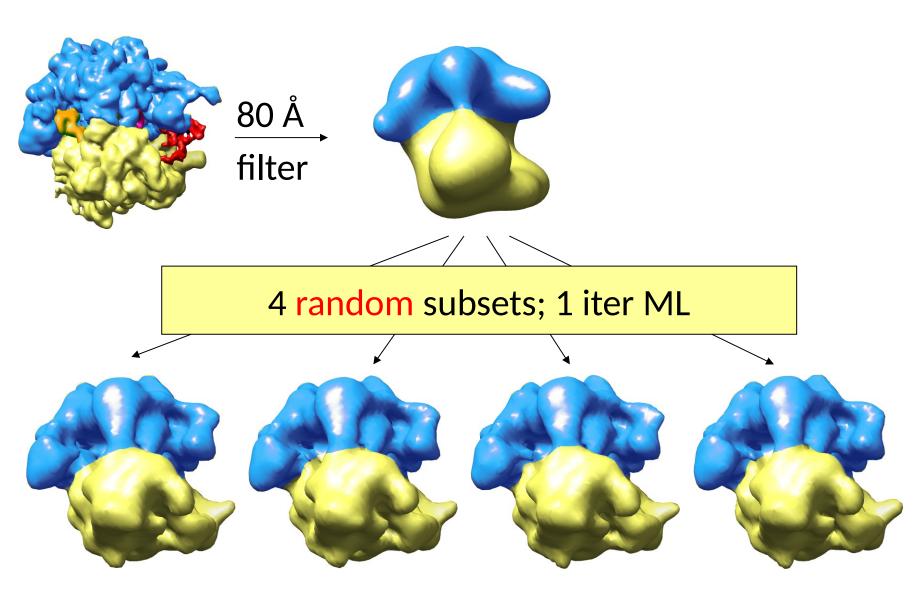


"Probability-weighted angular assignment"

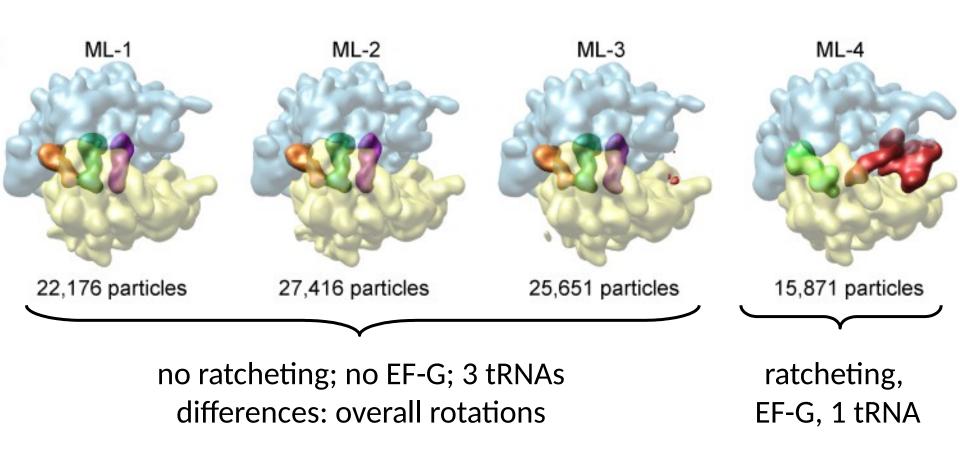
Prelim. ribosome reconstruction 91,114 particles; 9.9 Å resolution



Seed generation



ML-derived classes

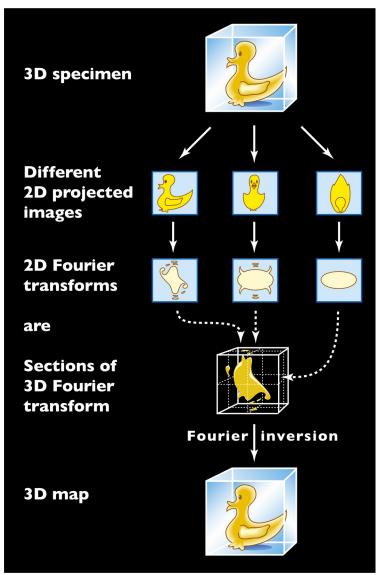


(Results coincided with a supervised classification)

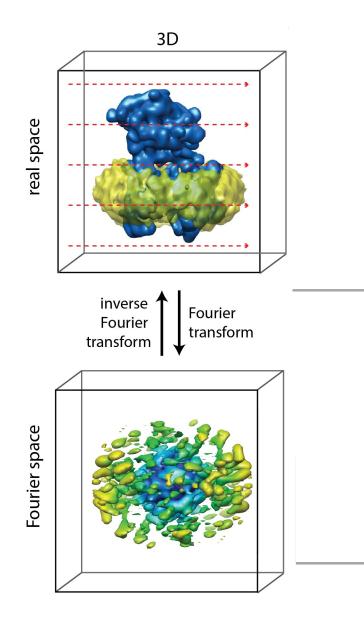
Scheres et al (2007) Nat. Meth.

Fourier-space formulation

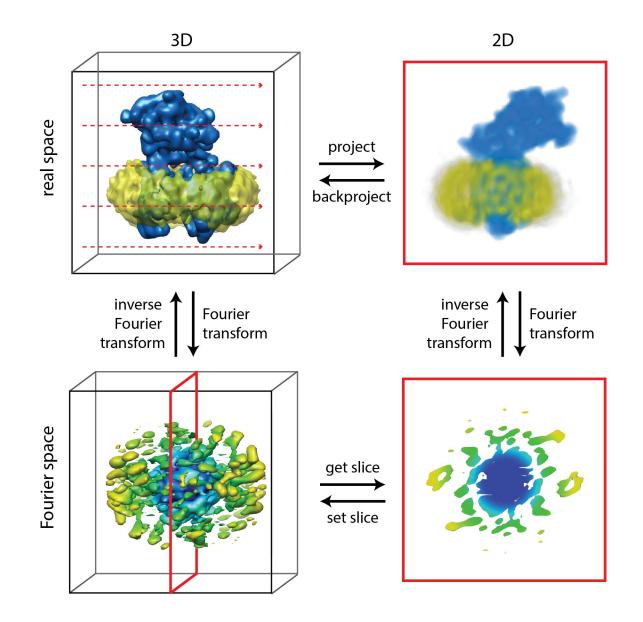
Projection-slice theorem



Projection-slice theorem



Projection slice theorem



Data model

Real-space

$$X_i = \mathrm{CTF}_i \otimes \mathbf{P}_{\varphi} V_k + N_i$$

- Convolute w/ CTF
- \mathbf{P}_{ϕ} implements integrals
- N_i describes white noise

• Fourier space

$$\boldsymbol{X}_{i} = \mathrm{CTF}_{i} \boldsymbol{P}_{\varphi} \boldsymbol{V}_{k} + \boldsymbol{N}_{i}$$

- Multiply w/ CTF
- \mathbf{P}_{ϕ} takes a slice
- N_i describes coloured noise

Regularised Likelihood

Maximum-likelihood estimators

- The best one can do...
- ...in the limit of infinitely large data sets
- But my data set is limited in size, right?!
 Even with Krios, K3 & EPU!

The bad news

• The experimental data alone is not enough to determine a unique solution!

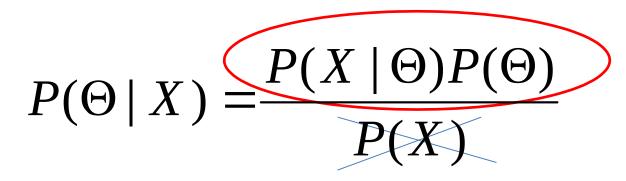
• There are many noisy reconstructions that describe the data equally well...

• Danger of incorrect interpretation...

The good news

- By incorporating external information, a different problem may be solved for which a unique solution does exist!
- Regularisation
- Conventional regularisation approaches
 - Wiener filtering
 - Low-pass filtering

A Bayesian view on regularization



Posterior = Likelihood * Prior Evidence

Regularised likelihood optimisation

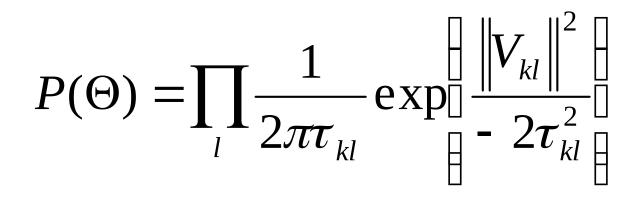
Likelihood

- Assume noise is Gaussian and independent
 - in Fourier space
 - with spectral power $\sigma^2(\upsilon)$: coloured noise

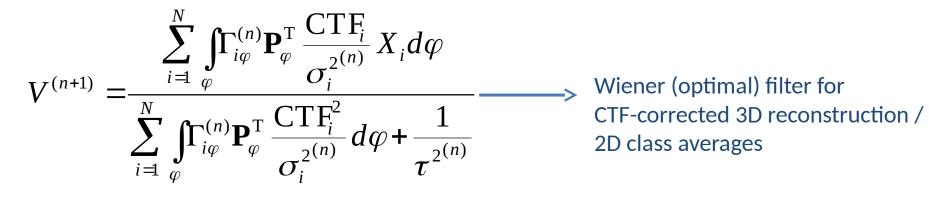
$$P(X_i | k, \varphi, \Theta) = \prod_{j=1}^{J} \frac{1}{2\pi\sigma_{ij}} \exp \left[\frac{\left\|X_{ij} - CTF_{ij}(\mathbf{P}_{\varphi}V_k)_j\right\|^2}{-2\sigma_{ij}^2}\right]$$

Prior

- Assume signal is Gaussian and independent
 - in Fourier space
 - Limited power $\tau^2(\upsilon)$: smoothness in real space!



Expectation maximization

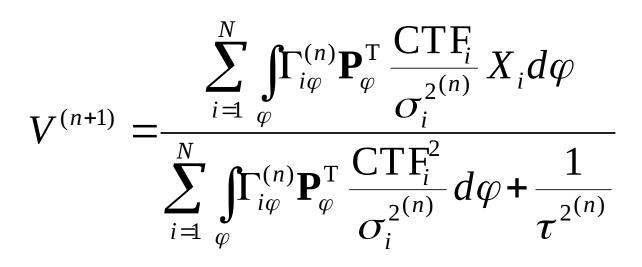


$$\sigma_i^{2^{(n+1)}} = \frac{1}{2} \iint_{\varphi} \Gamma_{i\varphi}^{(n)} \| X_i - CTF_i \mathbf{P}_{\varphi} V^{(n)} \|^2 d\varphi \longrightarrow \begin{array}{l} \text{Estimate resolution-dependent} \\ \text{power of noise from the data} \end{array}$$

 $\tau^{2^{(n+1)}} = \frac{1}{2} \|V^{(n)}\|^2 \longrightarrow \text{Estimate resolution-dependent}$ power of signal from the data

$$\Gamma_{i\varphi}^{(n)} = \frac{P(X_i | \varphi, \Theta^{(n)}) P(\varphi | \Theta^{(n)})}{\int\limits_{\varphi'} P(X_i | \varphi', \Theta^{(n)}) P(\varphi' | \Theta^{(n)}) d\varphi'}$$

3D Wiener filter



- Calculates SSNR(υ) (as a 3D function)
- Handles uneven orientational distribution
- Handles astigmatic CTFs & CTF er
- Corrects CTF & low-pass
- Optimal linear filter

WITHOUT ARBITRARINESS!

Recapitulating

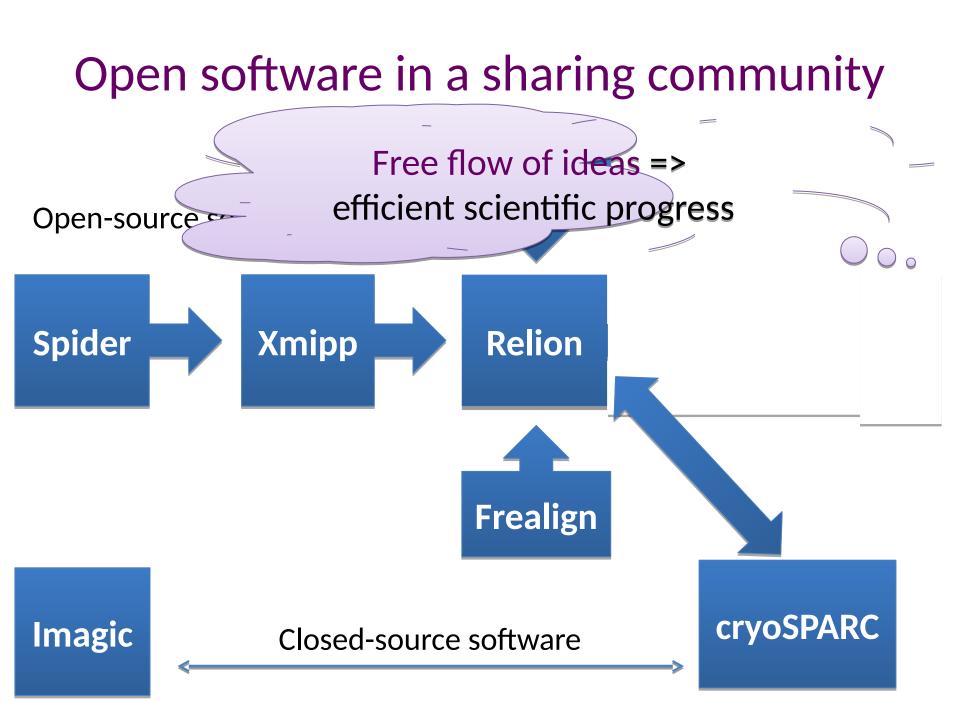
- Alignment & classification are incomplete problems

 Best dealt with by marginalisation (ML)
- 2D and 3D problems are very similar
- Fourier-space is most convenient
 - CTF multiplication
 - Slices instead of line integral projections
 - Coloured noise-model
 - Regularised Likelihood function -> 'optimal' filters

Further Reading

- Penczek, Fundamentals of Three-Dimensional Reconstruction from Projections, *Methods in Enzymology*, , **482** (2010) p 1
- Penczek, Image restoration in cryo-electron microscopy, Methods in Enzymology, , 482 (2010) p 35
- Sigworth, Doerschuk, Carazo & Scheres, An Introduction to Maximum-Likelihood Methods in Cryo-EM, *Methods in Enzymology*, **482** (2010) p 263
- Scheres, Classification of Structural Heterogeneity by Maximum-Likelihood Methods, *Methods in Enzymology*, **482** (2010) p 295
- Scheres, Processing of Structurally Heterogeneous Cryo-EM Data in RELION, *Methods in Enzymology*, **579** (2016) p 125
- www2.mrc-lmb.cam.ac.uk/relion (tutorial & Wiki pages)

Some thoughts on cryo-EM software



Recent trend of commercialisation

• Pharmaceutical interest -> commercial interest

- Protective measures
 - Restrictive licenses
 - Closed-source
 - Patents

Patents in cryo-EM software (I)

- We're used to patents for hardware
- Not so for mathematical concepts
- Software development is much cheaper!
- Academics typically do software development themselves, but not hardware

Patents in cryo-EM software (II)

- Apply widely, rely on patent offices to restrict
 - Which patent officer will be expert on cryo-EM algorithms?
 - In US many things possible, EU is more restrictive
 - US-only patents still hard as companies are international

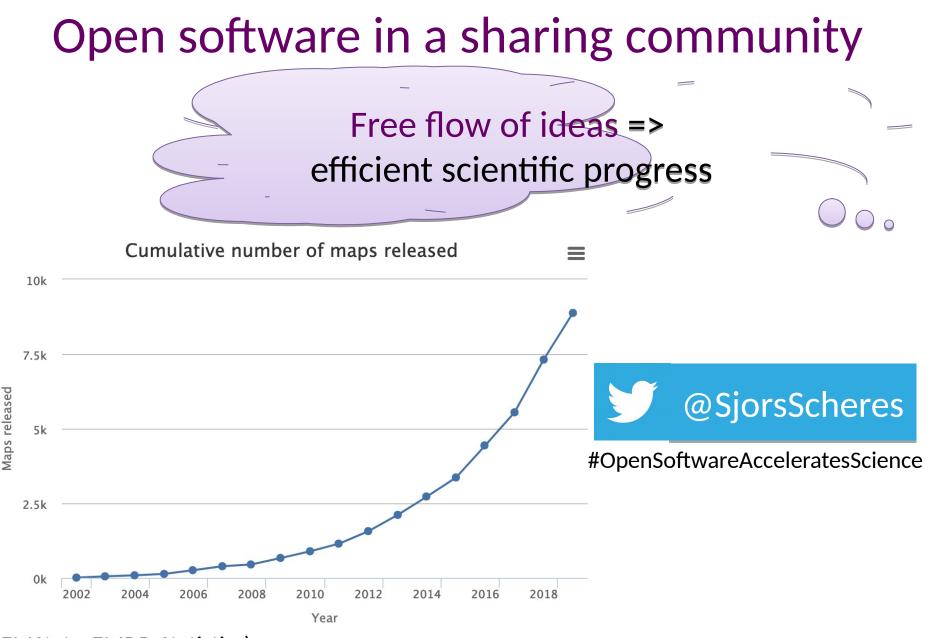
- Separation between academics/industry is extremely difficult
 - Collaborations, spin-offs, liability, etc.

A warning from the past

 Commercial distribution rights to Xplor were owned by a small company

 Good intentions; highly academic

- 15-20 years later, in hands of other company, these rights caused trouble
 - Xplor -> CNS -> CNX (now ~dead)
 - Academics had to restart from scratch: Phenix



(EMStats: EMDB-Statistics)